Advertisements
Advertisements
Question
निम्नलिखित युगपत समीकरणों को क्रेमर की पद्धति से हल कीजिए।
4x + 3y = 18; 3x − 2y = 5
Sum
Solution
दिए गए समीकरण,
4x + 3y = 18 ...(1)
3x − 2y = 5 ...(2)
यहाँ, a1 = 4, a2 = 3, b1 = 3, b2 = −2, c1 = 18, c2 = 5
D = `|(a_1, b_1), (a_2, b_2)|`
D = `|(4, 3), (3, -2)|`
= 4 × (−2) − 3 × 3
= −8 − 9
= −17
`D_x = |(c_1, b_1), (c_2, b_2)|`
`D_x = |(18, 3), (5, −2)|`
= 18 × (−2) − 3 × 5
= −36 − 15
= −51
`D_y = |(a_1, c_1), (a_2, c_2)|`
`D_y = |(4, 18), (3, 5)|`
= 4 × 5 − 18 × 3
= 20 − 54
= −34
क्रेमर पद्धति के अनुसार,
∴ `x = D_x/D`
= `(-51)/(-17)`
= 3
∴ `y = D_y/D`
= `(-34)/(-17)`
= 2
∴ दिए गए समीकरणों का हल (x, y) = (3, 2) है।
shaalaa.com
Is there an error in this question or solution?