English

On a graph paper, draw the lines x = 3 and y = –5. Now, on the same graph paper, draw the locus of the point which is equidistant from the given lines. - Mathematics

Advertisements
Advertisements

Question

On a graph paper, draw the lines x = 3 and y = –5. Now, on the same graph paper, draw the locus of the point which is equidistant from the given lines.

Graph

Solution

 
On the graph, draw axis XOX’ and YOY’

Draw a line l, x = 3 which is parallel to y-axis 

And draw another line m, y = –5, which is parallel to x-axis

These two lines intersect each other at P.

Now draw the angle bisector p of angle P.

Since p is the angle bisector of P, any point on P is equidistant from l and m.

Therefore, this line p is equidistant from l and m.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Loci (Locus and Its Constructions) - Exercise 16 (A) [Page 238]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 16 Loci (Locus and Its Constructions)
Exercise 16 (A) | Q 19 | Page 238

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

O is a fixed point. Point P moves along a fixed line AB. Q is a point on OP produced such that OP = PQ. Prove that the locus of point Q is a line parallel to AB.


Construct a triangle ABC, with AB = 5.6 cm, AC = BC = 9.2 cm. Find the points equidistant from AB and AC; and also 2 cm from BC. Measure the distance between the two points obtained. 


Construct a triangle ABC, with AB = 6 cm, AC = BC = 9 cm. Find a point 4 cm from A and equidistant from B and C. 


Use graph paper for this question. Take 2 cm = 1 unit on both the axes.

  1. Plot the points A(1, 1), B(5, 3) and C(2, 7).
  2. Construct the locus of points equidistant from A and B.
  3. Construct the locus of points equidistant from AB and AC.
  4. Locate the point P such that PA = PB and P is equidistant from AB and AC.
  5. Measure and record the length PA in cm. 

AB and CD are two intersecting lines. Find a point equidistant from AB and CD, and also at a distance of 1.8 cm from another given line EF. 


Using ruler and compasses construct:
(i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
(ii) the locus of point equidistant from A and C.
(iii) a circle touching AB at A and passing through C.


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length f 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle, that are equidistant from AB and AC.


Without using set squares or protractor.
(i) Construct a ΔABC, given BC = 4 cm, angle B = 75° and CA = 6 cm.
(ii) Find the point P such that PB = PC and P is equidistant from the side BC and BA. Measure AP.


Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm.

  1. Construct the locus of points equidistant from B and C.
  2. Construct the locus of points equidistant from A and B.
  3. Mark the point which satisfies both the conditions (a) and (b) as 0. Construct the locus of points keeping a fixed distance OA from the fixed point 0.
  4. Construct the locus of points which are equidistant from BA and BC.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×