Advertisements
Advertisements
Question
On which axis do the following points lie?
R(−4,0)
Solution
According to the Rectangular Cartesian Co-ordinate system of representing a point (x, y),
If x > 0, y > 0 then the point lies in the 1st quadrant
If x < 0, y > 0 then the point lies in the 2nd quadrant
If x < 0, y < 0 then the point lies in the 3rd quadrant
If x > 0, y < 0 then the point lies in the 4th quadrant
But in case
if `x = 0, y != 0`then the point lies on the y-axis
if `y =0, x != 0` then the point lies on the x-axis
Here the point is given to be R (-4, 0). Comparing this with the standard form of (x, y) we have
x = -4
y = 0
Here we see that `y = 0, x != 0`
Hence the given point lies on the x-axis
APPEARS IN
RELATED QUESTIONS
Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.
Prove that the points (−2, 5), (0, 1) and (2, −3) are collinear.
Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.
A (3, 2) and B (−2, 1) are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.
Find the points on the y-axis which is equidistant form the points A(6,5) and B(- 4,3)
Find the ratio in which the pint (-3, k) divide the join of A(-5, -4) and B(-2, 3),Also, find the value of k.
The abscissa and ordinate of the origin are
Two points having same abscissae but different ordinate lie on
If P ( 9a -2 , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .
If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.
If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
Write the perimeter of the triangle formed by the points O (0, 0), A (a, 0) and B (0, b).
Write the ratio in which the line segment joining points (2, 3) and (3, −2) is divided by X axis.
If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?
If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find a : b.
If (−1, 2), (2, −1) and (3, 1) are any three vertices of a parallelogram, then
Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).