English

P और Q क्रमश : एक समांतर चतुर्भुज ABCD की सम्मुख AD और BC भुजाओं पर स्थित बिंदु इस प्रकार हैं कि PQ विकण AC और BD के प्रतिच्छेद बिंदु O से होकर जाता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

P और Q क्रमश : एक समांतर चतुर्भुज ABCD की सम्मुख AD और BC भुजाओं पर स्थित बिंदु इस प्रकार हैं कि PQ विकण AC और BD के प्रतिच्छेद बिंदु O से होकर जाता है। सिद्ध कीजिए कि PQ बिंदु O पर समद्विभाजित हो जाता है।

Sum

Solution

दिया गया है - ABCD एक समांतर चतुर्भुज है जिसके विकर्ण परस्पर O पर समद्विभाजित करते हैं।

दर्शाना है - PQ, O पर समद्विभाजित है।


∆ODP और ΔOBQ में,

∠BOQ = ∠POD   ...[चूंकि, शीर्षाभिमुख कोण]

∠OBQ = ∠ODP   ...[वैकल्पिक आंतरिक कोण]

और OB = OD  ...[दिया गया है।]

∴ ΔODP ≅ ΔOBQ   ...[ASA सर्वांगसमता नियम द्वारा]

∴ OP = OQ  ...[CPCT नियम द्वारा]

इसलिए, PQ, O पर समद्विभाजित है।

अतः सिद्ध हुआ।

shaalaa.com
समांतर रेखाओं की कसौटियाँ - प्रमेय - यदि एक चतुर्भुज में सम्मुख कोणों का प्रत्येक युग्म बराबर हो, तो वह समांतर चतुर्भुज होता है।
  Is there an error in this question or solution?
Chapter 8: चतुर्भुज - प्रश्नावली 8.4 [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 8 चतुर्भुज
प्रश्नावली 8.4 | Q 14. | Page 83
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×