English

सिद्ध कीजिए कि एक समांतर चतुर्भुज के कोणों के समद्विभाजकों द्वारा बना चतुर्भुज एक आयत होता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि एक समांतर चतुर्भुज के कोणों के समद्विभाजकों द्वारा बना चतुर्भुज एक आयत होता है।

Sum

Solution


दिया गया है - मान लीजिए ABCD एक समांतर चतुर्भुज है और AP, BR, CR क्रमश : ∠A, ∠B, ∠C और ∠D के समद्विभाजक हैं।

सिद्ध करना है - चतुर्भुज PQRS एक आयत है।

उपपत्ति - चूँकि, ABCD एक समांतर चतुर्भुज है, तो DC || AB और DA एक तिर्यक रेखा है।

∠A + ∠D = 180° ...[एक समांतर चतुर्भुज के अंतः कोणों का योग 180° है।]

⇒ `1/2` ∠A + `1/2` ∠D = 90°  ...[दोनों पक्षों को 2 से विभाजित करने पर]

∠PAD + ∠PDA = 90°

∠APD = 90°   ...[चूँकि, त्रिभुज के सभी कोणों का योग 180° होता है।]

∴ ∠SPQ = 90°  ...[शीर्षाभिमुख कोण]

∠PQR = 90°

∠QRS = 90°

और ∠PSR = 90°

इस प्रकार, PQRS एक चतुर्भुज है जिसका प्रत्येक कोण 90° है।

अतः, PQRS एक आयत है।

shaalaa.com
चतुर्भुज के प्रकार - समांतर चतुर्भुज के गुणधर्म
  Is there an error in this question or solution?
Chapter 8: चतुर्भुज - प्रश्नावली 8.4 [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 8 चतुर्भुज
प्रश्नावली 8.4 | Q 13. | Page 83

RELATED QUESTIONS

ABCD एक आयत है जिसमें विकर्ण AC दोनों कोणों A और C को समद्विभाजित करता है। दर्शाइए कि: 

  1. ABCD एक वर्ग है।
  2. विकर्ण BD दोनों कोणों B और D को समद्विभाजित करता है।

ABCD एक समांतर चतुर्भज है तथा AP और CQ शीर्षों A और C से विकर्ण BD पर क्रमशः लम्ब हैं (देखिए आकृति में)। दर्शाइए कि

  1. ΔAPB ≅ ΔCQD
  2. AP = CQ


किसी समांतर चतुर्भुज के दो आसन्न कोनो के माप बराबर हैं। समांतर चतुर्भुज के सभी कोणों की माप ज्ञात कीजिए।


बताइए कैसे एक वर्ग एक समांतर चतुर्भुज है।


एक चतुर्भुज का नाम बताइए जिसके विकर्ण एक दूसरे को समद्विभाजित करते है।


निम्नलिखित आकृति में, यह दिया है कि BDEF और FDCE समांतर चतुर्भुज हैं। क्या आप कह सकते हैं कि BD = CD है? क्यों और क्यों नहीं? 


एक चतुर्भुज ABCD के विकर्ण परस्पर समद्विभाजित करते हैं। यदि ∠A = 35° है, तो ∠B निर्धारित कीजिए।


एक समांतर चतुर्भुज ABCD की सम्मुख भुजाओं AB और CD पर क्रमश : बिंदु P और Q इस प्रकार लिए गए हैं कि AP = CQ है। (आकृति)। दर्शाइए कि AC और PQ परस्पर समद्विभाजित करते हैं।


यदि एक चतुर्भुज के सम्मुख कोण बराबर हों, तो वह अवश्य ही समांतर चतुर्भुज होगा।


आकृति में, बिंदु G, ΔDEF की माध्यिकाओं का संगामी बिंदु है। किरण DG पर बिंदु H इस प्रकार लें कि D-G-H तथा DG = GH, हो तो सिद्ध कीजिए कि `square` GEHF समांतर चतुर्भुज है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×