Advertisements
Advertisements
Question
निम्नलिखित आकृति में, यह दिया है कि BDEF और FDCE समांतर चतुर्भुज हैं। क्या आप कह सकते हैं कि BD = CD है? क्यों और क्यों नहीं?
Solution
BDEF एक समांतर चतुर्भुज है। ...[दिया गया है।]
इसलिए, BD = EF ...(i) [समांतर चतुर्भुज की सम्मुख भुजा]
FDCE एक समांतर चतुर्भुज है। ...[दिया गया है।]
इसलिए, CD = EF ...(ii)
अब, समीकरण (i) और (ii) से, हम प्राप्त करते हैं।
BD = CD
APPEARS IN
RELATED QUESTIONS
ABCD एक समांतर चतुर्भज है तथा AP और CQ शीर्षों A और C से विकर्ण BD पर क्रमशः लम्ब हैं (देखिए आकृति में)। दर्शाइए कि
- ΔAPB ≅ ΔCQD
- AP = CQ
निम्न समांतर चतुर्भुज में अज्ञात x, y, z के मानों को ज्ञात कीजिए:
निम्नलिखित के लिए कारण दीजिए:
वर्ग, आयत, समांतर चतुर्भुज और समचतुर्भुज में से प्रत्येक एक चतुर्भुज भी है।
क्या किसी चतुर्भुज के सभी कोण न्यून कोण हो सकते हैं? अपने उत्तर का कारण दीजिए।
नीचे दी गयी आकृति में, ABCD और BDCE एक ही आधार DC पर दो समांतर चतुर्भुज हैं। यदि BC ⊥ BD है, तो ∠BEC बराबर है –
एक समांतर चतुर्भुज की आसन्न भुजाएँ 5 cm और 9 cm है। उसका परिमाप ______ है।
सभी आयत समांतर चतुर्भुज होते हैं।
एक समांतर चतुर्भुज MODE में, ∠M कोण ∠O के समद्विभाजक Q पर मिलते हैं। ∠MQO की माप ज्ञात कीजिए।
निम्न आकृति में, FD || BC || AE है और AC || ED है। x का मान ज्ञात कीजिए –
संलग्न आकृति में रेख AB || रेख PQ , रेख AB ≅ रेख PQ, रेख AC || रेख PR, रेख AC ≅ रेख PR तो सिद्ध कीजिए कि रेख BC || रेख QR तथा रेख BC ≅ रेख QR