Advertisements
Advertisements
Question
Prove that `(1 + sec θ - tan θ)/(1 + sec θ + tan θ) = (1 - sin θ)/(cos θ)`.
Sum
Solution
sec2 θ − tan2 θ = 1
(sec θ − tan θ) (sec θ + tan θ) = 1
L.H.S = `((sec θ - tan θ) (sec θ + tan θ) + (sec θ - tan θ))/(1 + sec θ + tan θ)`
= `((sec θ - tan θ) [sec θ + tan θ + 1])/ ([1 + sec θ + tan θ])`
= sec θ − tan θ
= `1/cos θ - sin θ/cos θ = (1 - sin θ)/cos θ`
L.H.S = R.H.S
Hence Proved.
shaalaa.com
Is there an error in this question or solution?