English

Prove that A(4, 3), B(6, 4), C(5, 6) and D(3, 5) Are the Angular Points of a Square. - Mathematics

Advertisements
Advertisements

Question

Prove that A(4, 3), B(6, 4), C(5, 6) and D(3, 5) are the angular points of a square.

Sum

Solution

Now
AB = `sqrt((4 - 6)^2 + (3 - 4)^2)`
= `sqrt(4 + 1) = sqrt(5)"units"`
BC = `sqrt((6 - 5)^2 + (4 - 6)^2) = sqrt(1 + 4)`
BC = `sqrt(5)"units"`.
CD = `sqrt((5 - 3)^2 + (6 - 5)^2) = sqrt(4 + 1)`
CD = `sqrt(5)"units"`
Also DA = `sqrt((4 - 3)^2 + (3 + 5)^2)`
= `sqrt(1 + 4) = sqrt(5)`
DA = `sqrt(5)"units"`
So AB = BC = CD = DA.
Now slope of AB = m1 - `(4 - 3)/(6 - 4) = (1)/(2)`
Slope of BC = m2 = `(6 - 4)/(5 - 6) = (2)/(-1)`
Slope of CA = m3 = `(5 - 6)/(3 - 5) = (1)/(2)`
Slope of DA = m4 = `(5 - 3)/(3 - 4) = (2)/(-1)`
Since m1 = m3 and = m2 = m4
So AB || CD
and BC || DA.
Therefore, AB ⊥ BC
∴ ABCD is a square.
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Coordinate Geometry - Prove the Following

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 11 Coordinate Geometry
Prove the Following | Q 10

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×