Advertisements
Advertisements
Question
Prove that: `(cos theta - 2 cos^3 theta)/(sin theta - 2 sin^3 theta) + cot theta = 0`.
Solution
Given:
`(cos theta - 2 cos^3 theta)/(sin theta - 2 sin^3 theta) + cot theta = 0`
Step 1: Factorization of numerator and denominator
`cos^3 theta = cos theta · cos^2 theta`
`sin^3 theta = sin theta · sin^2 theta`
Now, rewrite the given fraction:
`(cos theta - 2 cos^3 theta)/(sin theta - 2 sin^3 theta)`
Factor out cos θ and sin θ:
`(cos theta(1 - 2cos^2 theta))/(sin theta (1 - 2sin^2 theta))`
1 = 2sin2θ = cos2θ
Fraction simplifies to:
`(cos theta (- cos2theta))/(sin theta(cos 2theta))`
`(-cos theta)/(sin theta)`
Using the identity `(-cos theta)/(sin theta) = cot theta`, we get
−cot θ
Thus, adding cot θ:
−cot θ + cotθ = 0
`(cos theta - 2 cos^3 theta)/(sin theta - 2 sin^3 theta) + cot theta = 0`
Hence proved.