Advertisements
Advertisements
Question
Given that sin θ + cos θ = x, prove that sin4 θ + cos4 θ = `(2-(x^2-1)^2)/2`.
Sum
Solution
(sinθ + cosθ)2 = x2
(a + b)2 = a2 + 2ab + b2
sin2θ + 2sinθ cosθ + cos2θ = x2
Since sin2θ + cos2θ = 1, we substitute:
1 + 2sinθ cosθ = x2
2sinθ cosθ = x2 − 1
sinθ cosθ = `(x^2-1)/2`
sin4 θ + cos4 θ
sin4θ + cos4θ = (sin2θ + cos2θ)2 − 2sin2θ cos2θ
Substituting sin2θ + cos2θ = 1
sin4θ + cos4θ = 1 − 2sin2θ cos2θ
sin2θ cos2θ = `((x^2-1)/2)^2`
We substitute:
sin4θ + cos4θ = `1-2xx((x^2-1)^2)/4`
= `1-((x^2-1)^2)/2`
= `(2-(x^2-1)^2)/2`
sin4 θ + cos4 θ = `(2-(x^2-1)^2)/2`
Hence proved.
shaalaa.com
Is there an error in this question or solution?