English

Given that sin θ + cos θ = x, prove that sin4 θ + cos4 θ = 2-(x2-1)22. - Mathematics

Advertisements
Advertisements

Question

Given that sin θ + cos θ = x, prove that sin4 θ + cos4 θ = `(2-(x^2-1)^2)/2`.

Sum

Solution

(sinθ + cosθ)2 = x2

(a + b)2 = a2 + 2ab + b2

sin2θ + 2sinθ cosθ + cos2θ = x2

Since sin⁡2θ + cos⁡2θ = 1, we substitute:

1 + 2sinθ cosθ = x2

2sinθ cosθ = x2 − 1

sinθ cosθ = `(x^2-1)/2`

sin4 θ + cos4 θ

sin4θ + cos4θ = (sin2θ + cos2θ)2 − 2sin2θ cos2θ

Substituting sin⁡2θ + cos2⁡θ = 1

sin4θ + cos4θ = 1 − 2sin2θ cos2θ

sin2θ cos2θ = `((x^2-1)/2)^2`

We substitute:

sin4θ + cos4θ = `1-2xx((x^2-1)^2)/4`

= `1-((x^2-1)^2)/2`

= `(2-(x^2-1)^2)/2`

sin4 θ + cos4 θ = `(2-(x^2-1)^2)/2`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (February) Standard - 30/6/1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×