English

Prove that the Points ^ I − ^ J , 4 ^ I + 3 ^ J + ^ K and 2 ^ I − 4 ^ J + 5 ^ K Are the Vertices of a Right-angled Triangle. - Mathematics

Advertisements
Advertisements

Question

Prove that the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k} \text{ and }2 \hat{i} - 4 \hat{j} + 5 \hat{k}\] are the vertices of a right-angled triangle.

Sum

Solution

Given the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k}\] and\[2 \hat{i} - 4 \hat{j} + 5 \hat{k}\]  Are A, B and C respectively.
Then,
\[\overrightarrow{AB} = 4 \hat{i} + 3 \hat{j} + \hat{k} - \hat{i} + \hat{j} = 3 \hat{i} + 4 \hat{j} + \hat{k} . \]
\[ \overrightarrow{BC} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} - 4 \hat{i} - 3 \hat{j} - \hat{k} = - 2 \hat{i} - 7 \hat{j} + 4 \hat{k} . \]
\[ \overrightarrow{CA} = \hat{i} - \hat{j} - 2 \hat{i} + 4 \hat{j} - 5 \hat{k} = - \hat{i} + 3 \hat{j} - 5 \hat{k} .\]
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 3 \hat{i} + 4 \hat{j} + \hat{k} - 2 \hat{i} - 7 \hat{j} + 4 \hat{k} - \hat{i} + 3 \hat{j} - 5 \hat{k} = \vec{0} .\]
The given points forms a vertices of a triangle.
Now,
\[\left| \overrightarrow{AB} \right| = \sqrt{9 + 16 + 1} = \sqrt{26} . \]
\[\left| \overrightarrow {BC} \right| = \sqrt{4 + 49 + 16} = \sqrt{69} . \]
\[\left| \overrightarrow{CA} \right| = \sqrt{1 + 9 + 25} = \sqrt{35} .\]
\[\left| \overrightarrow{AB} \right|^2 + \left| \overrightarrow{CA} \right|^2 = 26 + 35 = 61\] ≠ \[\left| \overrightarrow{BC} \right|^2\]
The given triangle is not right-angled.

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.6 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.6 | Q 7 | Page 49

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (–5, 7).


Find the sum of the vectors `veca = hati -2hatj + hatk, vecb = -2hati + 4hatj + 5hatk and vecc = hati - 6hatj - 7hatk.`


In triangle ABC, which of the following is not true:


A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.


If `veca = vecb + vecc`, then is it true that `|veca| = |vecb| + |vecc|`? Justify your answer.


If `veca = hati  +hatj + hatk, vecb = 2hati - hatj +  3hatk and vecc = hati - 2hatj + hatk` find a unit vector parallel to the vector `2veca - vecb + 3vecc`.


The two adjacent sides of a parallelogram are `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to its diagonal. Also, find its area.


Let `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk ` and `vecc = 2hati - hatj + 4hatk`. Find a vector `vecd` which is perpendicular to both `veca` and `vecb`, and `vecc.vecd = 15`.


ABCDE is a pentagon, prove that
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = \overrightarrow{0}\]


If P is a point and ABCD is a quadrilateral and \[\overrightarrow{AP} + \overrightarrow{PB} + \overrightarrow{PD} = \overrightarrow{PC}\], show that ABCD is a parallelogram.


ABCD is a parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that
\[\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4 \vec{OP}\]


ABCD are four points in a plane and Q is the point of intersection of the lines joining the mid-points of AB and CD; BC and AD. Show that\[\vec{PA} + \vec{PB} + \vec{PC} + \vec{PD} = 4 \vec{PQ}\], where P is any point.


Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.


Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]


If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].


Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.


If `6hati + 10hatj + 3hatk = x(hati + 3hatj + 5hatk) + y(hati - hatj + 5hatk) + z(hati + 3hatj - 4hatk)`, then ______


Find the value of λ such that the vectors `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"` are orthogonal ______.


`veca, vecb` and `vecc` are perpendicular to `vecb + vecc, vecc + veca` and `veca + vecb` respectively and if `|veca + vecb|` = 6, `|vecb + vecc|` = 8 and `|vecc + veca|` = 10, then `|veca + vecb + vecc|` is equal to


A vector whose initial and terminal point continues is known as:-


Find the value of `x` and `y`. so that the vectors `2hatj + 3hatj` and `xhati + yhati` are equal


ABCD is a rhombus whose diagonals intersect at E . Then `vec(EA) + vec(EB) + vec(EC) + vec(ED)` equals to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×