English

In triangle ABC, which of the following is not true: - Mathematics

Advertisements
Advertisements

Question

In triangle ABC, which of the following is not true:

Options

  • `vec(AB) + vec(BC) + vec(CA) = vec 0`

  • `vec(AB) + vec(BC) - vec(AC) = vec 0`

  • `vec(AB) + vec(BC) - vec(AC) = vec 0`

  • `vec(AB) - vec(CB) + vec(CA) = vec 0`

MCQ
True or False

Solution

`vec(AB) + vec(BC) - vec(AC) = vec 0`

Explanation:

On applying the triangle law of addition in the given triangle, we have:

`vec(AB) + vec(BC) = vec(AC)`          ......(1)

⇒ `vec(AB) + vec(BC) = -vec(CA)`

⇒ `vec(AB) + vec(BC) + vec(CA) = vec0`              .....(2)

∴ The equation given in alternative A is true.

`vec(AB) + vec(BC) = vec(AC)`

⇒ `vec(AB) + vec(BC) - vec(AC) = vec0`

∴ The equation given in alternative B is true,

From equation (2), we have:

`vec(AB) - vec(CB) + vec(CA) = 0`

∴The equation given in the alternative D is true.

Now, consider the equation given in alternative C:

`vec(AB) + vec(BC) - vec(CA) = vec0`

⇒ `vec(AB) + vec(BC) = vec(CA)`              ....(3)

From equation (1) and (3), we have:

`vec(AC) = vec(CA)`

⇒ `vec(AC) = -vec(AC)` 

⇒ `vec(AC) + vec(AC) = 0`

⇒ `2vec(AC) = vec0`

⇒ `vec(AC) = vec0` which is not true.

Hence, the equation given in alternative C is incorrect.

The correct answer is C.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise 10.2 [Page 441]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise 10.2 | Q 18. | Page 441

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the values of x and y so that the vectors `2hati + 3hatj and xhati  + yhatj` are equal.


Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (–5, 7).


Find the sum of the vectors `veca = hati -2hatj + hatk, vecb = -2hati + 4hatj + 5hatk and vecc = hati - 6hatj - 7hatk.`


If `veca` and `vecb` are two collinear vectors, then which of the following are incorrect:


A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.


If `veca = vecb + vecc`, then is it true that `|veca| = |vecb| + |vecc|`? Justify your answer.


If `veca = hati  +hatj + hatk, vecb = 2hati - hatj +  3hatk and vecc = hati - 2hatj + hatk` find a unit vector parallel to the vector `2veca - vecb + 3vecc`.


The two adjacent sides of a parallelogram are `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to its diagonal. Also, find its area.


ABCD is a quadrilateral. Find the sum the vectors \[\overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD}\] and \[\overrightarrow{DA}\]


ABCDE is a pentagon, prove that
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = \overrightarrow{0}\]


ABCDE is a pentagon, prove that 
\[\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC} = 3\overrightarrow{AC}\]


Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.


ABCD is a parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that
\[\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4 \vec{OP}\]


ABCD are four points in a plane and Q is the point of intersection of the lines joining the mid-points of AB and CD; BC and AD. Show that\[\vec{PA} + \vec{PB} + \vec{PC} + \vec{PD} = 4 \vec{PQ}\], where P is any point.


Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.


Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]


If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].


Find the unit vector in the direction of the sum of the vectors `2hati + 3hatj - hatk and 4hati - 3hatj + 2hatk .`


Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.


If `6hati + 10hatj + 3hatk = x(hati + 3hatj + 5hatk) + y(hati - hatj + 5hatk) + z(hati + 3hatj - 4hatk)`, then ______


`[(bar"a", bar"b" + bar"c", bar"a" + bar"b" + bar"c")]` = ______.


Find the value of λ such that the vectors `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"` are orthogonal ______.


Let the position vectors of the points A, Band C be `veca, vecb` and `vecc` respectively. Let Q be the point of intersection of the medians of the triangle ΔABC. Then `vec(QA) + vec(QB) + vec(QC)` =


A vector whose initial and terminal point continues is known as:-


Find the value of `x` and `y`. so that the vectors `2hatj + 3hatj` and `xhati + yhati` are equal


If in ΔABC, `vec(BA) = 2veca` and `vec(BC) = 3vecb`, then `vec(AC)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×