English

Prove that the Sum of All Vectors Drawn from the Centre of a Regular Octagon to Its Vertices is the Zero Vector. - Mathematics

Advertisements
Advertisements

Question

Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.

Sum

Solution

Given: A regular octagon of eight sides with centre O.
To show: \[\overrightarrow{OA} +\overrightarrow{OB} + \overrightarrow{OC} +\overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF} + \overrightarrow{OG} + \overrightarrow{OH} = \overrightarrow{0} .\]
Proof: We know centre of the regular octagon bisects all the diagonals passing through it.
\[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +\overrightarrow{OE} + \overrightarrow{OF} + \overrightarrow{OG} + \overrightarrow{OH} =\overrightarrow{0} .\] and \[\overrightarrow{OC} = -\overrightarrow{OG} .\]
\[\overrightarrow{OA} + \overrightarrow{OE} = \overrightarrow{0} , \overrightarrow{OB} + \overrightarrow{OF} = \overrightarrow{0} , \overrightarrow{OD} + \overrightarrow{OH} = \vec{0}\] 

\[\overrightarrow{OA} = - \overrightarrow{OE} , \overrightarrow{OB} = - \overrightarrow{OF} , \overrightarrow{OD} = - \overrightarrow{OH}\] and \[\overrightarrow{OC} +\overrightarrow{OG} = \overrightarrow{0} .\]    ............(i)
Now, 

\[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +\overrightarrow{OE} + \overrightarrow{OF} + \overrightarrow{OG} + \overrightarrow{OH} \]

\[ = \left(\overrightarrow{OA} +\overrightarrow{OE} \right) + \left( \overrightarrow{OB} + \overrightarrow{OF} \right) + \left( \overrightarrow{OC} + \overrightarrow{OG} \right) + \left( \overrightarrow{OD} + \overrightarrow{OH} \right)\]

\[ = \overrightarrow{0} +\overrightarrow{0} +\overrightarrow{0} + \overrightarrow{0} \]

\[ = \overrightarrow{0}\]
Hence proved.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.2 | Q 8 | Page 17

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the values of x and y so that the vectors `2hati + 3hatj and xhati  + yhatj` are equal.


Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (–5, 7).


Find the sum of the vectors `veca = hati -2hatj + hatk, vecb = -2hati + 4hatj + 5hatk and vecc = hati - 6hatj - 7hatk.`


In triangle ABC, which of the following is not true:


If `veca` and `vecb` are two collinear vectors, then which of the following are incorrect:


If `veca = vecb + vecc`, then is it true that `|veca| = |vecb| + |vecc|`? Justify your answer.


If `veca = hati  +hatj + hatk, vecb = 2hati - hatj +  3hatk and vecc = hati - 2hatj + hatk` find a unit vector parallel to the vector `2veca - vecb + 3vecc`.


The two adjacent sides of a parallelogram are `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to its diagonal. Also, find its area.


Let `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk ` and `vecc = 2hati - hatj + 4hatk`. Find a vector `vecd` which is perpendicular to both `veca` and `vecb`, and `vecc.vecd = 15`.


ABCD is a quadrilateral. Find the sum the vectors \[\overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD}\] and \[\overrightarrow{DA}\]


ABCDE is a pentagon, prove that
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = \overrightarrow{0}\]


ABCDE is a pentagon, prove that 
\[\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC} = 3\overrightarrow{AC}\]


If P is a point and ABCD is a quadrilateral and \[\overrightarrow{AP} + \overrightarrow{PB} + \overrightarrow{PD} = \overrightarrow{PC}\], show that ABCD is a parallelogram.


Prove that the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k} \text{ and }2 \hat{i} - 4 \hat{j} + 5 \hat{k}\] are the vertices of a right-angled triangle.


Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.


Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]


If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].


If `6hati + 10hatj + 3hatk = x(hati + 3hatj + 5hatk) + y(hati - hatj + 5hatk) + z(hati + 3hatj - 4hatk)`, then ______


`[(bar"a", bar"b" + bar"c", bar"a" + bar"b" + bar"c")]` = ______.


Find the value of λ such that the vectors `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"` are orthogonal ______.


`veca, vecb` and `vecc` are perpendicular to `vecb + vecc, vecc + veca` and `veca + vecb` respectively and if `|veca + vecb|` = 6, `|vecb + vecc|` = 8 and `|vecc + veca|` = 10, then `|veca + vecb + vecc|` is equal to


A vector whose initial and terminal point continues is known as:-


Find the value of `x` and `y`. so that the vectors `2hatj + 3hatj` and `xhati + yhati` are equal


If in ΔABC, `vec(BA) = 2veca` and `vec(BC) = 3vecb`, then `vec(AC)` is ______.


ABCD is a rhombus whose diagonals intersect at E . Then `vec(EA) + vec(EB) + vec(EC) + vec(ED)` equals to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×