Advertisements
Advertisements
Question
Prove that:
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta)` = 1 + sec θ cosec θ
Theorem
Solution
LHS = `tan theta/(1 - cot theta) + cot theta/(1 - tan theta)`
= `tan theta/(1 - 1/tan theta) + (1/tan theta)/(1 - tan theta)`
= `tan^2theta/(tan theta - 1) + 1/(tan theta(1 - tan theta)`
= `tan^2theta/(tan theta - 1) - 1/(tan theta(tan theta - 1)`
= `(tan^3theta - 1)/(tan theta(tan theta - 1))`
= `((tan theta - 1)(tan^2theta + tan theta + 1))/(tan theta(tan theta - 1))` ....[Using a3 − b3 = (a − b) (a2 + ab + b2]
= `(tan^2theta + tan theta + 1)/(tan theta)`
= `(sec^2theta + tan theta)/(tan theta) = sec^2/tan theta + 1`
= `cos theta/(cos^2theta sin theta) + 1`
= sec θ . cosec θ + 1
= 1 + sec θ . cosec θ
= RHS
Hence Proved.
shaalaa.com
Is there an error in this question or solution?