Advertisements
Advertisements
Question
Prove the following:
tan8θ − tan5θ − tan3θ = tan8θ · tan5θ · tan3θ
Solution
∵ 8θ = 5θ + 3θ
∴ tan8θ = tan(5θ + 3θ) ...`[tan ("A + B") = (tan "A" + tan "B")/(1 - tan "A" * tan "B")]`
∴ tan8θ = `(tan5theta + tan3theta)/(1 - tan5theta * tan3theta)`
∴ tan8θ (1 − tan5θ · tan3θ) = tan5θ + tan3θ
∴ tan 8θ – tan 8θ · tan 5θ · tan 3θ = tan 5θ + tan 3θ
∴ tan 8θ – tan 5θ – tan 3θ = tan 8θ · tan 5θ · tan 3θ
APPEARS IN
RELATED QUESTIONS
Prove the following:
`cos (pi/2 - x) cos(pi/2 - y) - sin(pi/2 - x) sin(pi/2 - y)` = – cos (x + y)
Prove the following:
cos(x + y).cos(x − y) = cos2y − sin2x
Prove the following:
tan50° = tan40° + 2 tan10°
Find sin 2x, cos 2x, tan 2x if secx = `(-13)/5, pi/2 < x < pi`
If tan x = `3/4, π < x < (3π)/2`, then the value of `cos x/2` is ______.
The value of tan `π/8` is ______.
The value of `(cotx - tanx)/(cot 2x)` is ______.