English

परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

Sum

Solution

हमें दिया गया है कि: x2 = 2py   ......(i)

और y2 = 2px    ......(ii)

समीकरण (i) से

हमें प्राप्त है: y = `x^2/(2"p")`

का मान समीकरण  (ii) में रखने पर

हमें प्राप्त होता है: `(x^2/(2"p"))` = 2px

⇒ `x^4/(4"p"^2)` = 2px

⇒ x4 = 8p3x

⇒ x4 – 8p3x = 0

⇒ x(x3 – 8p3) = 0

∴ x = 0, 2p

वाँछित क्षेत्रफल = क्षेत्र का क्षेत्रफल (OCBA – ODBA)

= `int_0^(2"p") sqrt(2"p"x)  "d"x - int_0^(2"p") x^2/(2"p")  "d"x`

= `sqrt(2"p") * 2/3 [x^(3/2)]_0^(2"p") - 1/(2"p") * 1/3 [x^3]_0^(2"p")`

= `(2sqrt(2))/3 sqrt("p") [(2"p")^(3/2) - 0] - 1/(6"p") [(2"p")^3 - 0]`

= `(2sqrt(2))/3 sqrt("p") * 2sqrt(2) "p"^(3/2) - 1/(6"p") * 8"p"^3`

= `8/3 * "p"^2 - 8/6 "p"^2`

= `8/6 "p"^2`

= `4/3 "p"^2` वर्ग इकाई

इस प्रकार, वाँछित क्षेत्रफल = `4/3 "p"^2` वर्ग इकाई

shaalaa.com
समाकलनों के अनुप्रयोग
  Is there an error in this question or solution?
Chapter 8: स्माकलो के अनुप्रयोग - प्रश्नावली [Page 172]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 8 स्माकलो के अनुप्रयोग
प्रश्नावली | Q 2 | Page 172

RELATED QUESTIONS

0 और π के बीच, वक्र y = sin x का क्षेत्रफल ज्ञात कीजिए।


परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।


वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


x-अक्ष के ऊपर परवलय y2 = ax और वृत्त x2 + y2 = 2ax के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।


वृत्त x2 + y2 = 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है


वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = x2 + x, x-अक्ष तथा x = 2 और x = 5 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल के ______ बराबर है।


वक्र y2 = 9x, और y = 3x से परिबद्ध क्षेत्रफल का क्षेत्रफल ज्ञात कीजिए।


y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र `{(x, 0) : y = sqrt(4 - x^2)}` और x-अक्ष का चित्रण कीजिए। समाकलन का उपयोग करते हुए इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2`sqrtx`  के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x2 = 4y  और सरल रेखा x = 4y – 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = `sqrt(16 - x^2)` और x-अक्ष से परिबद्ध क्षेत्र का क्षेत्रफल है


परवलय y2 = x और सरल रेखा 2y = x से परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है


दीर्घवृत्त `x^2/25 + "y"^2/16` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×