English
Maharashtra State BoardSSC (English Medium) 8th Standard

Radius of a circle with centre O is 25 cm. Find the distance of a chord from the centre if length of the chord is 48 cm. - Marathi (Second Language) [मराठी (द्वितीय भाषा)]

Advertisements
Advertisements

Question

Radius of a circle with centre O is 25 cm. Find the distance of a chord from the centre if length of the chord is 48 cm.

Sum

Solution

seg OP ⊥ chord CD            …[Given]

∴ l(PD) = `1/2 l(CD)`           …[Perpendicular drawn from the centre of a circle to its chord bisects the chord]

∴ l(PD) = `1/2 xx 48`           …[∵ l(CD) = 48 cm]

∴ l(PD) = 24 cm

In ΔOPD, 

∠ OPD = 90°

∴ [l(OD)]2 = [l(OP)]2 + [l(PD)]2             … [Pythagoras theorem]

∴ (25)2 = [l(OP)]2 + (24)2

∴ (25)2 − (24)2 = [l(OP)]2

∴ 625 − 576 = [l(OP)]2

∴ 49 = [l(OP)]2

∴ l(OP) = `sqrt(49)`           …[Taking square root of both sides]

∴ l(OP) = 7 cm

∴ The distance of the chord from the centre of the circle is 7 cm.

shaalaa.com
Properties of Chord of a Circle
  Is there an error in this question or solution?
Chapter 17: Circle : Chord and Arc - Practice Set 17.1 [Page 116]

APPEARS IN

Balbharati Mathematics [English] 8 Standard Maharashtra State Board
Chapter 17 Circle : Chord and Arc
Practice Set 17.1 | Q 2 | Page 116
Balbharati Integrated 8 Standard Part 4 [English Medium] Maharashtra State Board
Chapter 3.4 Circle: Chord and Arc
Practice Set 17.1 | Q 2. | Page 71
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×