Advertisements
Advertisements
Question
Read the statement below carefully and state with reason, if it is true or false:
The average speed of a particle (defined as total path length divided by the time taken to cover the path) is either greater or equal to the magnitude of average velocity of the particle over the same interval of time.
Options
True
False
Solution
This statement is True.
Explanation:
The total path length is always greater than or equal to the magnitude of displacement of a particle. Therefore, the average speed is greater or equal to the magnitude of the average velocity.
APPEARS IN
RELATED QUESTIONS
Pick out the two scalar quantities in the following list:
Force, Angular momentum, Work, Current, Linear momentum, Electric field, Average velocity, Magnetic moment, Relative velocity.
State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful:
- adding any two scalars,
- adding a scalar to a vector of the same dimensions,
- multiplying any vector by any scalar,
- multiplying any two scalars,
- adding any two vectors,
- adding a component of a vector to the same vector.
Read the statement below carefully and state, with reason and example, if it is true or false:
A scalar quantity is one that is conserved in a process.
Read the statement below carefully and state, with reason and example, if it is true or false:
A scalar quantity is one that must be dimensionless.
The angle between A = `hati` + `hatj` and B = `hati` − `hatj` is ______.
It is found that |A + B| = |A|.This necessarily implies ______.
Following are four differrent relations about displacement, velocity and acceleration for the motion of a particle in general. Choose the incorrect one (s):
- `v_(av) = 1/2 [v(t_1) + v(t_2)]`
- `v_(av) = (r(t_2) - r(t_1))/(t_2 - t_1)`
- `r = 1/2 (v(t_2) - v(t_1))(t_2 - t_1)`
- `a_(av) = (v(t_2) - v(t_1))/(t_2 - t_1)`
A hill is 500 m high. Supplies are to be sent across the hill using a canon that can hurl packets at a speed of 125 m/s over the hill. The canon is located at a distance of 800 m from the foot of hill and can be moved on the ground at a speed of 2 m/s; so that its distance from the hill can be adjusted. What is the shortest time in which a packet can reach on the ground across the hill? Take g = 10 m/s2.
The magnitude of vectors `vec"A"`, `vec"B"` and `vec"C"` are respectively 12, 5 and 13 units and `vec"A"` + `vec"B"` = `vec"C"`, then the angle between `vec"A"` and `vec"B"` is ______.
A force `vec"F"=(hat"i"+2hat"j"+3hat"k")`N acts at a point `(4hat"i"+3hat"j"-hat"k")`m. Then the magnitude of torque about the point `(hat"i" + 2hat"j" + hat"k")` m will be `sqrtx` N-m. The value of x is ______.