Advertisements
Advertisements
Question
Rs. 8,000 is lent out at 7% compound interest for 2 years. At the end of the first year Rs. 3,560 are returned. Calculate :
(i) the interest paid for the second year.
(ii) the total interest paid in two years.
(iii) the total amount of money paid in two years to clear the debt.
Solution
(i) For 1st year :
P = Rs. 8,000; R = 7 % and T = 1 year
Interest = Rs. `[ 8,000 xx 7 xx 1 ]/[100]` = Rs. 560.
Amount = Rs. 8,000 + Rs. 560 = Rs. 8,560
Money returned = Rs. 3,560
Balance money for 2nd year= Rs. 8,560 - Rs. 3,560 = Rs. 5,000
For 2nd year :
P = Rs. 5,000; R = 7 % and T = 1 year.
Interest paid for the second year = Rs. `[ 5,000 xx 7 xx 1 ]/100`
= Rs. 350
(ii) The total interest paid in two years= Rs. 350 + Rs. 560 = Rs. 910
(iii) The total amount of money paid in two years to clear the debt
= Rs. 8,000+ Rs. 910 = Rs. 8,910
APPEARS IN
RELATED QUESTIONS
Calculate the amount and compound interest on Rs 18000 for `2 1/2` years at 10% per annum compounded annually.
Calculate the amount and compound interest on Rs 8000 for 1 year at 9% per annum compound half yearly. (You could use the year by year calculation using SI formula to verify)
Calculate the amount and compound interest on Rs 10000 for 1 year at 8% per annum compounded half yearly.
Find the difference between the compound interest and simple interest. On a sum of Rs 50,000 at 10% per annum for 2 years.
Rachana borrowed a certain sum at the rate of 15% per annum. If she paid at the end of two years Rs 1290 as interest compounded annually, find the sum she borrowed.
The difference between the S.I. and C.I. on a certain sum of money for 2 years at 4% per annum is Rs 20. Find the sum.
The present population of a town is 28000. If it increases at the rate of 5% per annum, what will be its population after 2 years?
A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find: the original sum.
Geeta borrowed Rs. 15,000 for 18 months at a certain rate of interest compounded semi-annually. If at the end of six months it amounted to Rs. 15,600; calculate :
(i) the rate of interest per annum.
(ii) the total amount of money that Geeta must pay at the end of 18 months in order to clear the account.
Ramesh invests Rs. 12,800 for three years at the rate of 10% per annum compound interest. Find:
(i) the sum due to Ramesh at the end of the first year.
(ii) the interest he earns for the second year.
(iii) the total amount due to him at the end of the third year.
A sum of Rs. 13,500 is invested at 16% per annum compound interest for 5years. Calculate :
(i) the interest for the first year.
(ii) the amount at the end of first year.
(iii) the interest for the second year, correct to the nearest rupee.
Ashok borrowed Rs. 12,000 at some rate on compound interest. After a year, he paid back Rs.4,000. If the compound interest for the second year is Rs. 920, find:
- The rate of interest charged
- The amount of debt at the end of the second year
Calculate the compound interest on Rs. 15,000 in 3 years; if the rates of interest for successive years be 6%, 8%, and 10% respectively.
Mohan borrowed Rs. 16,000 for 3 years at 5% per annum compound interest. Calculate the amount that Mohan will pay at the end of 3 years.
Mr. Sharma lends ₹24,000 at 13% p.a. simple interest and an equal sum at 12% p.a. compound interest. Find the total interest earned by Mr. Sharma in 2 years.
The simple interest on a certain sum of money at 4% p.a. for 2 years is Rs1500. What will be the compound interest on the same sum for the same time?
Find the difference between simple and compound interest on Rs 5000 invested for 3 years at 6% p.a., interest payable yearly.
A man borrows Rs 62500 at 8% p.a., simple interest for 2 years. He immediately lends the money out at CI at the same rate and for same time. What is his gain at the end of 2 years?
The compound interest payable annually on a certain sum for 2 years is Rs 40.80 and the simple interest is Rs 40. Find the sum and the rate percent.
The difference between simple interest and compound interest compounded annually on a certain sum is Rs.448 for 2 years at 8 percent per annum. Find the sum.
The annual rate of growth in population of a town is 10%. If its present population is 26620, then the population 3 years ago was _________
The difference between the C.I and S.I for 2 years for a principal of ₹ 5000 at the rate of interest 8% p.a is ___________
The compound interest on ₹ 16000 for 9 months at 20% p.a, compounded quarterly is ₹ 2522
Find the compound interest on ₹ 3200 at 2.5% p.a for 2 years, compounded annually
Find the compound interest for `2 1/2` years on ₹ 4000 at 10% p.a, if the interest is compounded yearly
The time taken for ₹ 4400 to become ₹ 4851 at 10%, compounded half yearly is _______
The compound interest on Rs 50,000 at 4% per annum for 2 years compounded annually is ______.