Advertisements
Advertisements
Question
शीर्ष बिंदु A(7, 1), B(3, 5) और C(2, 0) वाले त्रिभुज के परिवृत्त के केंद्र (परिकेंद्र) का निर्देशांक और त्रिज्या ज्ञात कीजिए।
Solution
A(7, 1); B(3, 5) और C(2, 0).
मानो कि, O(a, b) यह वृत्त का परिकेंद्र है |
∴ OA = OB ............(एक ही वृत्त की त्रिज्याएँ)
∴ `sqrt((a - 7)^2 + (b - 1)^2) = sqrt((a - 3)^2 + (b - 5)^2)` .................(दूरी सूत्र से)
दोनों पक्षों का वर्ग करने पर,
(a - 7)2 + (b - 1)2 = (a - 3)2 + (b - 5)2
∴ a2 - 14a + 49 + b2 - 2b + 1 = a2 - 6a + 9 + b2 - 10b + 25
∴ -14a - 2b + 50 = -6a - 10b + 34
∴ -14a + 6a - 2b + 10b = 34 - 50
∴ -8a + 8b = -16
-8(a - b) = -16
∴ a - b = `(-16)/(-8)`
∴ a - b = 2 ...........................(1)
OB = OC ......................(एक ही वृत्त की त्रिज्याएँ)
∴ `sqrt((a - 3)^2 + (b - 5)^2) = sqrt((a - 2)^2 + (b - 0)^2)`
दोनों पक्षों का वर्ग करने पर,
`(a - 3)^2 + (b - 5)^2 = (a - 2)^2 + (b - 0)^2`
∴ `a^2 - 6a + 9 + b^2 - 10b + 25 = a^2 - 4a + 4 + b^2`
∴ -6a - 10b + 34 = -4a + 4
∴ -6a + 4a - 10b = -4 - 34
∴ -2a - 10b = -30
∴ -2(a + 5b) = -30
∴ a + 5b = `(-30)/(-2)`
∴ a + 5b = 15 ................(2)
समीकरण (2) में से समीकरण (1) को घटने पर,
a + 5b = 15
a - b = -2
- + -
6b = 13
∴ b = `13/6`
b का मान समीकरण (1) में रखने पर,
a - b = 2
∴ a - `13/6 = 2`
∴ a = `2 + 13/6`
∴ a = `(12 + 13)/6`
∴ a = `25/6`
∴ परिकेंद्र का निर्देशांक `(25/6, 13/6)` है |
दूरी सूत्र से,
∴ त्रिज्याएँ = OC = `sqrt((2 - 25/6)^2 + (0 - 13/6)^2)`
= `sqrt(((12 - 25)/6)^2 + ((-13)/6)^2)`
= `sqrt(((-13)/6)^2 + ((-13)/6)^2`
= `sqrt(169/36 + 169/36)`
= `sqrt((169 xx 2)/36)`
= `(13sqrt2)/6`
∴ परिवृत्त की त्रिज्या `(13sqrt2)/6` है |
परिवृत्त के परिकेंद्र का निर्देशांक `underline((25/6, 13/6)` है और त्रिज्या `underline((13sqrt2)/6` है |
APPEARS IN
RELATED QUESTIONS
यदि बिंदु L(x, 7) और M(1, 15) के बीच की दूरी 10 हो, तो x का मान ज्ञात कीजिए।
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
R(0, 3), D(2, 1), S(3, -1)
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
P(-2, -6), Q(-4, -2), R(-5, 0)
सिद्ध कीजिए कि, बिंदु P(1, −2), Q(5, 2), R(3, −1) और S(−1, −5) समांतर चतुर्भुज के शीर्षबिंदु हैं।
y का वह मान ज्ञात कीजिए, जिसके लिए बिंदु P(2, -3) और Q(10, y) के बीच की दूरी 10 मात्रक है।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-3, 5), (3, 1), (0, 3), (-1, -4)
बिंदुओं (0, 5) और (–5, 0) के बीच की दूरी ______ है।
यदि बिंदु P(2, 1), बिंदुओं A(4, 2) और B(8, 4) को मिलाने वाले रेखाखंड पर स्थित तो ______ है।
मूलबिंदु को केंद्र मान कर खींचा गया एक वृत्त बिंदु `(13/2, 0)` से होकर जाता है। तब, वृत्त के अभ्यंतर में निम्नलिखित बिंदु स्थित नहीं ______ है।
बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।