Advertisements
Advertisements
Question
बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।
Options
सत्य
असत्य
Solution
यह कथन असत्य है।
स्पष्टीकरण:
यदि केंद्र और किसी बिंदु के बीच की दूरी त्रिज्या के बराबर है, तो हम कहते हैं कि वह बिंदु वृत्त पर स्थित है।
अब, P(–2, 4) और केंद्र (3, 5) के बीच की दूरी
d = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
= `sqrt((3 + 2)^2 + (5 - 4)^2`
= `sqrt(5^2 + 1^2)`
= `sqrt(25 + 1)`
= `sqrt(26)`
जो वृत्त की त्रिज्या के बराबर नहीं है।
अतः, बिंदु P(–2, 4) वृत्त पर स्थित नहीं है।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
L(-2, 3), M(1, -3), N(5, 4)
सिद्ध कीजिए कि, P(2, -2), Q(7, 3), R(11, -1) और S(6, -6) समांतर चर्तुभुज के शीर्षबिंदु है।
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
P(-2, -6), Q(-4, -2), R(-5, 0)
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(-5, 7), (-1, 3)
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(a, b), (-a, -b)
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
तीन शीर्षों A(–2, 3), B(6, 7) और C(8, 3) वाले समांतर चतुर्भुज ABCD का चौथा शीर्ष D ______ हैं।
बिंदु A(4, 3), B(6, 4), C(5, –6) और D(–3, 5) एक समांतर चतुर्भुज के शीर्ष हैं।
बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।
एक बिंदु ज्ञात कीजिए, जो A(–5, 4) और B(–1, 6) से समदूरस्थ हो। ऐसे कितने बिंदु हैं?