Advertisements
Advertisements
Question
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
Solution
वर्ग ABCD में दो सम्मुख शीर्ष A(-1, 2) एवं C(3, 2) दिए हैं। मान लीजिए B (x1, y1) एवं D (x2, y2) दो अन्य शीर्ष हैं।
AB = BC (वर्ग की भुजाएँ)
`sqrt((x_1 + 1)^2 + (y_1 - 2)^2) = sqrt((x_1 - 3)^2 + (y_1 - 2)^2)`
⇒ (x1 + 1)2 + (y1 - 2)2 = (x1 - 3)2 + (y1 - 2)2 (दोनों ओर वर्ग करने पर)
⇒ (x1 + 1)2 = (x1 - 3)2
⇒ x12 + 2x1 + 1 = x12 - 6x1 + 9
⇒ 2x1 + 6x1 = 9 - 1
⇒ 8x1 = 8
⇒ x1 = 88 = 1 ….(1)
∵ AB2 + BC2 = AC2 (समकोण ∆ABC में पाइथागोरस प्रमेय से)
⇒ (x1 + 1)2 + (y1 - 2)2 + (x1 - 3)2 + (y1 - 2)2 = (3 + 1)2 + (2 - 2)2
⇒ x12 + 2x1 + 1 + y12 – 4y1 + 4 + x12 - 6x1 + 9 + y12 - 4y1 + 4 = 16 - 0
⇒ 2x12 + 2y12 - 4x1 - 8y1 = 16 - 18 = -2
⇒ x12 + y12 - 2x1 - 4y1 + 1 = 0 …(2)
⇒ x1 = 1 का मान समीकरण (1) से समीकरण (2) में रखने पर,
⇒ (1)2 + (y1)2 - 2 (1) - 4y1 + 1 = 0
⇒ y12 - 4y1 = 0
⇒ y1 (y1 - 4) = 0
या तो y1 = 0 अथवा y1 - 4 = 0
⇒ y1 = 4
B के निर्देशांक (1, 0) अथवा (1, 4) हैं।
AD = DC (वर्ग की भुजाएँ हैं)
⇒ `sqrt((x_2 + 1)^2 + (y_2 - 2)^2) = sqrt((x_2 - 3)^2 + (y_2 - 2)^2)`
⇒ (x2 + 1)2 + (y2 - 2)2 = (x2 - 3)2 + (y2 - 2)2 (दोनों ओर वर्ग करने पर)
⇒ (x2 + 1)2 = (x2 - 3)2
⇒ x22 + 2x2 + 1 = x22 - 6x2 + 9
⇒ 8x2 = 8
⇒ x2 = `8/8` = 1 . …(3)
AD2 + CD2 = AC2 (समकोण ∆ADC में पाइथागोरस प्रमेय से)
⇒ (x2 + 1)2 + (y2 - 2)2 + (x2 - 3)2 + (y2 - 2)2 = (3 + 1)2 + (2 - 2)2
⇒ x22 + 2x2 + 1 + y22 - 4y2 + 4 + x22 - 6x2 + 9 + y22 - 4y2 + 4 = 16 + 0
⇒ 2x22 + 2y22 - 4x2 - 8y2 = 16 - 18 = -2
⇒ x22 + y22 – 2x2 - 4y2 + 1 = 0 ….(4)
x2 = 1 का मान समीकरण (3) से समीकरण (4) में रखने पर,
⇒ (1)² + y22 - 2 (1) - 4y2 + 1 = 0
⇒ 1 + y22 - 2 - 4y2 + 1 = 0
⇒ y22 - 4y2 = 0
⇒ y2 (y2 - 4) = 0
या तो y2 = 0 अथवा y2 - 4 = 0
⇒ y2 = 4
D के निर्देशांक (1, 0) अथवा (1, 4)
अतः अभीष्ट शीर्षों के निर्देशांक क्रमशः (1, 0) एवं (1, 4) हैं।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
A(1, −3), B(2, −5), C(−4, 7)
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
R(0, 3), D(2, 1), S(3, -1)
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
P(-2, 3), Q(1, 2), R(4, 1)
यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि `square`PQRS एक आयत है।
बिंदुओं (0,0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?
x-अक्ष पर वह बिंदु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ हैं।
x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।
शीर्षों (0, 4), (0, 0) और (3, 0) वाले त्रिभुज का परिमाप ______ है।
बिंदु P(0, 2), बिंदुओं A(–1, 1 ) और B(3, 3) को मिलाने वाले रेखाखंड के लंब समद्विभाजक और y-अक्ष का प्रतिच्छेद बिंदु है।