Advertisements
Advertisements
प्रश्न
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
उत्तर
वर्ग ABCD में दो सम्मुख शीर्ष A(-1, 2) एवं C(3, 2) दिए हैं। मान लीजिए B (x1, y1) एवं D (x2, y2) दो अन्य शीर्ष हैं।
AB = BC (वर्ग की भुजाएँ)
`sqrt((x_1 + 1)^2 + (y_1 - 2)^2) = sqrt((x_1 - 3)^2 + (y_1 - 2)^2)`
⇒ (x1 + 1)2 + (y1 - 2)2 = (x1 - 3)2 + (y1 - 2)2 (दोनों ओर वर्ग करने पर)
⇒ (x1 + 1)2 = (x1 - 3)2
⇒ x12 + 2x1 + 1 = x12 - 6x1 + 9
⇒ 2x1 + 6x1 = 9 - 1
⇒ 8x1 = 8
⇒ x1 = 88 = 1 ….(1)
∵ AB2 + BC2 = AC2 (समकोण ∆ABC में पाइथागोरस प्रमेय से)
⇒ (x1 + 1)2 + (y1 - 2)2 + (x1 - 3)2 + (y1 - 2)2 = (3 + 1)2 + (2 - 2)2
⇒ x12 + 2x1 + 1 + y12 – 4y1 + 4 + x12 - 6x1 + 9 + y12 - 4y1 + 4 = 16 - 0
⇒ 2x12 + 2y12 - 4x1 - 8y1 = 16 - 18 = -2
⇒ x12 + y12 - 2x1 - 4y1 + 1 = 0 …(2)
⇒ x1 = 1 का मान समीकरण (1) से समीकरण (2) में रखने पर,
⇒ (1)2 + (y1)2 - 2 (1) - 4y1 + 1 = 0
⇒ y12 - 4y1 = 0
⇒ y1 (y1 - 4) = 0
या तो y1 = 0 अथवा y1 - 4 = 0
⇒ y1 = 4
B के निर्देशांक (1, 0) अथवा (1, 4) हैं।
AD = DC (वर्ग की भुजाएँ हैं)
⇒ `sqrt((x_2 + 1)^2 + (y_2 - 2)^2) = sqrt((x_2 - 3)^2 + (y_2 - 2)^2)`
⇒ (x2 + 1)2 + (y2 - 2)2 = (x2 - 3)2 + (y2 - 2)2 (दोनों ओर वर्ग करने पर)
⇒ (x2 + 1)2 = (x2 - 3)2
⇒ x22 + 2x2 + 1 = x22 - 6x2 + 9
⇒ 8x2 = 8
⇒ x2 = `8/8` = 1 . …(3)
AD2 + CD2 = AC2 (समकोण ∆ADC में पाइथागोरस प्रमेय से)
⇒ (x2 + 1)2 + (y2 - 2)2 + (x2 - 3)2 + (y2 - 2)2 = (3 + 1)2 + (2 - 2)2
⇒ x22 + 2x2 + 1 + y22 - 4y2 + 4 + x22 - 6x2 + 9 + y22 - 4y2 + 4 = 16 + 0
⇒ 2x22 + 2y22 - 4x2 - 8y2 = 16 - 18 = -2
⇒ x22 + y22 – 2x2 - 4y2 + 1 = 0 ….(4)
x2 = 1 का मान समीकरण (3) से समीकरण (4) में रखने पर,
⇒ (1)² + y22 - 2 (1) - 4y2 + 1 = 0
⇒ 1 + y22 - 2 - 4y2 + 1 = 0
⇒ y22 - 4y2 = 0
⇒ y2 (y2 - 4) = 0
या तो y2 = 0 अथवा y2 - 4 = 0
⇒ y2 = 4
D के निर्देशांक (1, 0) अथवा (1, 4)
अतः अभीष्ट शीर्षों के निर्देशांक क्रमशः (1, 0) एवं (1, 4) हैं।
APPEARS IN
संबंधित प्रश्न
यदि बिंदु L(x, 7) और M(1, 15) के बीच की दूरी 10 हो, तो x का मान ज्ञात कीजिए।
सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
A(`sqrt2, sqrt2`), B(`-sqrt2 , -sqrt2`), C(`-sqrt6 , sqrt6`)
जाँच कीजिए कि क्या बिंदु (5, -2), (6, 4) और (7,- 2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
बिंदुओं (0, 5) और (–5, 0) के बीच की दूरी ______ है।
आकृति में दर्शाए गए त्रिभुज AOB के तीनों शीर्षो से समदूरस्थ बिंदु के निर्देशांक ______ हैं।
बिंदु P(0, 2), बिंदुओं A(–1, 1 ) और B(3, 3) को मिलाने वाले रेखाखंड के लंब समद्विभाजक और y-अक्ष का प्रतिच्छेद बिंदु है।
एक वृत्त का केंद्र मूलबिंदु पर है तथा एक बिंदु P(5, 0) इस वृत्त पर स्थित है। बिंदु Q(6, 8) इस वृत्त के बाहर स्थित है।
किसी वृत्त का केन्द्र (2a, a – 7) है। यदि वृत्त, बिंदु (11, – 9) से होकर जाता है और उसका व्यास `10sqrt(2)` इकाई है, तो a के मान ज्ञात कीजिए।