Advertisements
Advertisements
प्रश्न
बिंदु P(0, 2), बिंदुओं A(–1, 1 ) और B(3, 3) को मिलाने वाले रेखाखंड के लंब समद्विभाजक और y-अक्ष का प्रतिच्छेद बिंदु है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन असत्य है।
स्पष्टीकरण:
हम जानते हैं कि, दो बिंदुओं को जोड़ने वाले रेखाखंड के लंबवत समद्विभाजक पर स्थित बिंदु दोनों बिंदुओं से समान दूरी पर होते हैं।
यानी, PA, PB के बराबर होना चाहिए।
दूरी सूत्र का प्रयोग करके,
d = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
PA = `sqrt([-4 - (4)]^2 + (6 - 2)^2`
PA = `sqrt((0)^2 + (4)^2` = 4
PB = `sqrt([-4 - 4]^2 + (-6 - 2)^2`
PB = `sqrt(0^2 + (-8)^2` = 8
∵ PA ≠ PB
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
L(-2, 3), M(1, -3), N(5, 4)
जाँच कीजिए कि क्या बिंदु (5, -2), (6, 4) और (7,- 2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
बिंदु P(–6, 8) की मूलबिंदु से दूरी ______ है।
AOBC एक आयत है, जिसके तीन शीर्ष A(0, 3), O(0, 0) और B(5, 0) हैं। इसका विकर्ण ______ हैं।
मूलबिंदु को केंद्र मान कर खींचा गया एक वृत्त बिंदु `(13/2, 0)` से होकर जाता है। तब, वृत्त के अभ्यंतर में निम्नलिखित बिंदु स्थित नहीं ______ है।
शीर्षों A(– 2, 0), B(2, 0) और C(0, 2) वाला त्रिभुज ABC शीर्षों D(–4, 0), E(4, 0) और F(0, 4) वाले त्रिभुज DEF के समरूप है।
बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।
बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।
यदि (a, b), बिंदुओं A(10, –6) और B(k, 4) को मिलाने वाले रेखाखंड का मध्य-बिंदु है तथा a – 2b = 18 है, तो k का मान और दूरी AB ज्ञात कीजिए।