हिंदी

बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन सत्य है।

स्पष्टीकरण:

A के निर्देशांक = (x1, y1) = (3, 1)

B के निर्देशांक = (x2, y2) = (12, – 2)

C के निर्देशांक = (x3, y3) = (0, 2)

∆ABC का क्षेत्रफल = ∆ = `1/2[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]`

Δ = `1/2 [3 - (2 - 2) + 12(2 - 1) + 0{1 - (- 2)}]`

Δ = `1/2 [3(- 4) + 12(1) + 0]`

Δ = `1/2 (- 12 + 12)` = 0

ΔABC का क्षेत्रफल = 0

चूँकि, बिंदु A(3, 1), B(12, – 2) और C(0, 2) संरेख हैं।

इसलिए, बिंदु A(3, 1), B(12, – 2) और C(0, 2) त्रिभुज के शीर्ष नहीं हो सकते।

shaalaa.com
त्रिभुज का क्षेत्रफल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: निर्देशांक ज्यामिति - प्रश्नावली 7.2 [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 7 निर्देशांक ज्यामिति
प्रश्नावली 7.2 | Q 5. | पृष्ठ ८३

संबंधित प्रश्न

उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:

(-5, -1), (3, -5), (5, 2)


शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।


किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।


x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।


एक त्रिभुज ABC के शीर्ष A(4, 6), B(1, 5) और C(7, 2) हैं। भुजाओं AB और AC को क्रमश: D और E पर प्रतिच्छेद करते हुए एक रेखा इस प्रकार खींची गई है कि `"AD"/"AB" = "AE"/"AC" = 1/4` है। ∆ADE का क्षेत्रफल परिकलित कीजिए और इसकी तुलना ∆ABC के क्षेत्रफल से कीजिए।

(प्रमेय 6.2 और प्रमेय 6.6 का स्मरण कीजिए।)


m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।


यदि बिंदु `D((-1)/2, 5/2) , E(7, 3)` और `F(7/2, 7/2)` एक त्रिभुज ABC की भुजाओं के मध्य-बिंदु हैं, तो ΔABC का क्षेत्रफल ज्ञात कीजिए। 


बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।


एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।


एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×