Advertisements
Advertisements
प्रश्न
किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।
उत्तर
दिया है ∆ABC के शीर्षों A(4, -6), B(3, -2) और C(5, 2) हैं तथा माध्यिका AD है, जहाँ BC का मध्य-बिन्दु D(x, y) है तो
`x = (3 + 5)/2 = 8/2 = 0`
`y = (-2 + 2)/2 = 0/2 = 0`
अब ∆ADB में A (4, -6), D (4, 0) एवं B (3, -2)
ar (ADB) = `1/2` [4 (0 + 2) + 4 (-2 + 6) + 3 (-6 - 0)]
= `1/2` [4 (2) + 4 (4) + 3 (-6)]
= `1/2` [8 + 16 - 18]
= `1/2` (24 - 18)
= `1/2 xx 6`
= 3 वर्ग मात्रक
एवं ∆ADC में A(4, -6), D(4, 0) एवं C(5, 2) हैं
ar (ADC) = `1/2` [4 (0 - 2) + 4 (2 + 6) + 5 (-6 - 0)]
= `1/2` [4 (-2) + 4 (8) + 5 (-6)]
= `1/2` [-8 + 32 - 30]
= `1/2 xx [-6]`
= -3 वर्ग मात्रक
लेकिन क्षेत्रफल एक धनात्मक राशि होती है = ar (ADC) = 3 वर्ग मात्रक
ar (ADB) = ar (ADC)
अतः किसी त्रिभुज की एक माध्यिका उस त्रिभुज को दो बराबर क्षेत्रफलों वाले त्रिभुजों में विभाजित करती है।
इति सिद्धम्
APPEARS IN
संबंधित प्रश्न
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(7, -2), (5, 1), (3, k)
x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।
यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है
एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।
एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।