मराठी

किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।

बेरीज

उत्तर

दिया है ∆ABC के शीर्षों A(4, -6), B(3, -2) और C(5, 2) हैं तथा माध्यिका AD है, जहाँ BC का मध्य-बिन्दु D(x, y) है तो

`x = (3 + 5)/2 = 8/2 = 0`

`y = (-2 + 2)/2 = 0/2 = 0`

 

अब ∆ADB में A (4, -6), D (4, 0) एवं B (3, -2)

ar (ADB) = `1/2` [4 (0 + 2) + 4 (-2 + 6) + 3 (-6 - 0)]

= `1/2` [4 (2) + 4 (4) + 3 (-6)]

= `1/2` [8 + 16 - 18]

= `1/2` (24 - 18)

= `1/2 xx 6`

= 3 वर्ग मात्रक

एवं ∆ADC में A(4, -6), D(4, 0) एवं C(5, 2) हैं

ar (ADC) = `1/2` [4 (0 - 2) + 4 (2 + 6) + 5 (-6 - 0)]

= `1/2` [4 (-2) + 4 (8) + 5 (-6)]

= `1/2` [-8 + 32 - 30]

= `1/2 xx [-6]`

= -3 वर्ग मात्रक

लेकिन क्षेत्रफल एक धनात्मक राशि होती है = ar (ADC) = 3 वर्ग मात्रक

ar (ADB) = ar (ADC)

अतः किसी त्रिभुज की एक माध्यिका उस त्रिभुज को दो बराबर क्षेत्रफलों वाले त्रिभुजों में विभाजित करती है।

इति सिद्धम्

shaalaa.com
त्रिभुज का क्षेत्रफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: निर्देशांक ज्यामिति - प्रश्नावली 7.3 [पृष्ठ १८८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 7 निर्देशांक ज्यामिति
प्रश्नावली 7.3 | Q 5. | पृष्ठ १८८

संबंधित प्रश्‍न

शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।


शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।


बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।


x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।


m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।


बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।


k के मान ज्ञात कीजिए, यदि बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेख हैं।


A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।  


एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।


एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×