Advertisements
Advertisements
प्रश्न
एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।
पर्याय
`sqrt(32)` cm
`sqrt(16)` cm
`sqrt(48)` cm
`sqrt(24)` cm
उत्तर
`bb(sqrt(32) cm)`
स्पष्टीकरण -
माना त्रिभुज की ऊँचाई = h
चूँकि त्रिभुज समद्विबाहु है,
माना आधार = ऊँचाई = h
प्रश्न के अनुसार,
त्रिभुज का क्षेत्रफल = 8 सेमी2
⇒ `1/2` × आधार × ऊँचाई = 8
⇒ `1/2` × h × h = 8
⇒ h2 = 16
⇒ h = 4 cm
आधार = ऊंचाई = 4 cm
चूँकि त्रिभुज समकोण है,
कर्ण2 = आधार2 + ऊँचाई2
⇒ कर्ण2 = 42 + 42
⇒ कर्ण2 = 32
⇒ कर्ण2 = `sqrt(32)`
अतः, इसके कर्ण की लंबाई `sqrt(32)` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(7, -2), (5, 1), (3, k)
शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।
एक त्रिभुज ABC के शीर्ष A(4, 6), B(1, 5) और C(7, 2) हैं। भुजाओं AB और AC को क्रमश: D और E पर प्रतिच्छेद करते हुए एक रेखा इस प्रकार खींची गई है कि `"AD"/"AB" = "AE"/"AC" = 1/4` है। ∆ADE का क्षेत्रफल परिकलित कीजिए और इसकी तुलना ∆ABC के क्षेत्रफल से कीजिए।
(प्रमेय 6.2 और प्रमेय 6.6 का स्मरण कीजिए।)
यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।
m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (–8, 4), (–6, 6) और (–3, 9) हैं।
यदि बिंदु `D((-1)/2, 5/2) , E(7, 3)` और `F(7/2, 7/2)` एक त्रिभुज ABC की भुजाओं के मध्य-बिंदु हैं, तो ΔABC का क्षेत्रफल ज्ञात कीजिए।
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।