Advertisements
Advertisements
प्रश्न
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (–8, 4), (–6, 6) और (–3, 9) हैं।
उत्तर
दिया गया है कि, त्रिभुजों के शीर्ष (–8, 4), (–6, 6) and (–3, 9) हैं।
मान लीजिए (x1, y1) `→` (−8, 4)
(x2, y2) `→` (−6, 6)
और (x3, y3) `→` (−3, 9)
हम जानते हैं कि, शीर्षों वाले त्रिभुज का क्षेत्रफल
(x1, y1), (x2, y2) and (x3, y3)
Δ = `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`
= `1/2[-8(6 - 9) - 6(9 - 4) + (-3)(4 - 6)]`
= `1/2[-8(-3) - 6(5) - 3(-2)]`
= `1/2(24 - 30 + 6)`
= `1/2(30 - 30)`
= `1/2(0)`
= 0
अतः, त्रिभुज का अभीष्ट क्षेत्रफल 0 है।
APPEARS IN
संबंधित प्रश्न
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:
(2, 3), (-1, 0), (2, -4)
उस चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष इसी क्रम में, (-4, -2), (-3, -5), (3, -2) और (2, 3) हैं।
शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।
A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।