मराठी

बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = 29AC है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन सत्य है।

स्पष्टीकरण:

यदि बिंदुओं (x1, y2), (x2, y2) और (x3, y3) से बने त्रिभुज का क्षेत्रफल शून्य है, तो बिंदु संरेख हैं,

∵ त्रिभुज का क्षेत्रफल = `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`

यहाँ, x1 = – 6, x2 = – 4, x3 = 3 और y1 = 10, y2 = 6, y3 = – 8

∴ ΔABC का क्षेत्रफल = `1/2[-6{6 - (-8)} + (-4)(-8 - 10) + 3(10 - 6)]`

= `1/2[-6(14) + (-4)(-18) + 3(4)]`

= `1/2(-84 + 72 + 12)`

= 0

तो, दिए गए बिंदु संरेख हैं।

अब, A(– 6, 10), B(– 4, 6) के बीच की दूरी

AB = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`

AB = `sqrt((-4 + 6)^2 + (6 - 10)^2` 

`sqrt(2^2 + 4^2)`

= `sqrt(4 + 16)`

= `sqrt(20)`

= `2sqrt(5)`

A(– 6, 10) और C(3, – 8) के बीच की दूरी,

AC = `sqrt((3 + 6)^2 + (-8 - 10)^2`

= `sqrt(9^2 + 18^2)`

= `sqrt(81 + 324)`

= `sqrt(405)`

= `sqrt(81 xx 5)`

= `9sqrt(5)`

∴ AB = `2/9` AC

जो आवश्यक संबंध है।

shaalaa.com
त्रिभुज का क्षेत्रफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: निर्देशांक ज्यामिति - प्रश्नावली 7.2 [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 7 निर्देशांक ज्यामिति
प्रश्नावली 7.2 | Q 10. | पृष्ठ ८३

संबंधित प्रश्‍न

उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:

(2, 3), (-1, 0), (2, -4)


शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।


बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।


शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।


बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।


k के मान ज्ञात कीजिए, यदि बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेख हैं।


एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।


एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है


एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है


एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×