English

बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = 29AC है। - Mathematics (गणित)

Advertisements
Advertisements

Question

बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है।

स्पष्टीकरण:

यदि बिंदुओं (x1, y2), (x2, y2) और (x3, y3) से बने त्रिभुज का क्षेत्रफल शून्य है, तो बिंदु संरेख हैं,

∵ त्रिभुज का क्षेत्रफल = `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`

यहाँ, x1 = – 6, x2 = – 4, x3 = 3 और y1 = 10, y2 = 6, y3 = – 8

∴ ΔABC का क्षेत्रफल = `1/2[-6{6 - (-8)} + (-4)(-8 - 10) + 3(10 - 6)]`

= `1/2[-6(14) + (-4)(-18) + 3(4)]`

= `1/2(-84 + 72 + 12)`

= 0

तो, दिए गए बिंदु संरेख हैं।

अब, A(– 6, 10), B(– 4, 6) के बीच की दूरी

AB = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`

AB = `sqrt((-4 + 6)^2 + (6 - 10)^2` 

`sqrt(2^2 + 4^2)`

= `sqrt(4 + 16)`

= `sqrt(20)`

= `2sqrt(5)`

A(– 6, 10) और C(3, – 8) के बीच की दूरी,

AC = `sqrt((3 + 6)^2 + (-8 - 10)^2`

= `sqrt(9^2 + 18^2)`

= `sqrt(81 + 324)`

= `sqrt(405)`

= `sqrt(81 xx 5)`

= `9sqrt(5)`

∴ AB = `2/9` AC

जो आवश्यक संबंध है।

shaalaa.com
त्रिभुज का क्षेत्रफल
  Is there an error in this question or solution?
Chapter 7: निर्देशांक ज्यामिति - प्रश्नावली 7.2 [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 7 निर्देशांक ज्यामिति
प्रश्नावली 7.2 | Q 10. | Page 83

RELATED QUESTIONS

निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:

(7, -2), (5, 1), (3, k)


x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।


बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।


शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।


शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।


यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।


बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।


A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।  


एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है


एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×