Advertisements
Advertisements
Question
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
स्पष्टीकरण:
यदि बिंदुओं (x1, y2), (x2, y2) और (x3, y3) से बने त्रिभुज का क्षेत्रफल शून्य है, तो बिंदु संरेख हैं,
∵ त्रिभुज का क्षेत्रफल = `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`
यहाँ, x1 = – 6, x2 = – 4, x3 = 3 और y1 = 10, y2 = 6, y3 = – 8
∴ ΔABC का क्षेत्रफल = `1/2[-6{6 - (-8)} + (-4)(-8 - 10) + 3(10 - 6)]`
= `1/2[-6(14) + (-4)(-18) + 3(4)]`
= `1/2(-84 + 72 + 12)`
= 0
तो, दिए गए बिंदु संरेख हैं।
अब, A(– 6, 10), B(– 4, 6) के बीच की दूरी
AB = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
AB = `sqrt((-4 + 6)^2 + (6 - 10)^2`
`sqrt(2^2 + 4^2)`
= `sqrt(4 + 16)`
= `sqrt(20)`
= `2sqrt(5)`
A(– 6, 10) और C(3, – 8) के बीच की दूरी,
AC = `sqrt((3 + 6)^2 + (-8 - 10)^2`
= `sqrt(9^2 + 18^2)`
= `sqrt(81 + 324)`
= `sqrt(405)`
= `sqrt(81 xx 5)`
= `9sqrt(5)`
∴ AB = `2/9` AC
जो आवश्यक संबंध है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(7, -2), (5, 1), (3, k)
x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।
एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है
एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है