Advertisements
Advertisements
Question
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
Options
सत्य
असत्य
Solution
यह कथन असत्य है।
स्पष्टीकरण:
यदि किसी त्रिभुज के बिंदुओं से बने त्रिभुज का क्षेत्रफल शून्य के बराबर है तो बिंदु संरेख होते हैं।
दिया गया,
x1 = 0, x2 = 0, x3 = 3 और y1 = 5, y2 = – 9, y3 = 6
∵ त्रिभुज का क्षेत्रफल = `1/2[x_1("y"_2 - "y"_3) + x_2("y"_3 - "y"_1) + x_3("y"_1 - "y"_2)]`
Δ = `1/2[0(-9 - 6) + 0(6 - 5) + 4(5 + 9)]`
Δ = `1/2(0 + 0 + 3 xx 14)`
Δ = `42/2 = 21 ≠ 0`
उपरोक्त समीकरण से, यह स्पष्ट है कि बिंदु संरेखी नहीं हैं।
APPEARS IN
RELATED QUESTIONS
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।
बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।
m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।
k के मान ज्ञात कीजिए, यदि बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेख हैं।
एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है
एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।