Advertisements
Advertisements
प्रश्न
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
पर्याय
सत्य
असत्य
उत्तर
यह कथन असत्य है।
स्पष्टीकरण:
यदि किसी त्रिभुज के बिंदुओं से बने त्रिभुज का क्षेत्रफल शून्य के बराबर है तो बिंदु संरेख होते हैं।
दिया गया,
x1 = 0, x2 = 0, x3 = 3 और y1 = 5, y2 = – 9, y3 = 6
∵ त्रिभुज का क्षेत्रफल = `1/2[x_1("y"_2 - "y"_3) + x_2("y"_3 - "y"_1) + x_3("y"_1 - "y"_2)]`
Δ = `1/2[0(-9 - 6) + 0(6 - 5) + 4(5 + 9)]`
Δ = `1/2(0 + 0 + 3 xx 14)`
Δ = `42/2 = 21 ≠ 0`
उपरोक्त समीकरण से, यह स्पष्ट है कि बिंदु संरेखी नहीं हैं।
APPEARS IN
संबंधित प्रश्न
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:
(2, 3), (-1, 0), (2, -4)
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:
(-5, -1), (3, -5), (5, 2)
किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।
x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
यदि बिंदु `D((-1)/2, 5/2) , E(7, 3)` और `F(7/2, 7/2)` एक त्रिभुज ABC की भुजाओं के मध्य-बिंदु हैं, तो ΔABC का क्षेत्रफल ज्ञात कीजिए।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है