Advertisements
Advertisements
Question
A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।
Solution
प्रश्न के अनुसार,
एक समांतर चतुर्भुज ABCD के तीन शीर्ष A(6, 1), B(8, 2) और C(9, 4) हैं।
माना समांतर चतुर्भुज का चौथा शीर्ष = (x, y),
हम जानते हैं, कि समांतर चतुर्भुज के विकर्ण परस्पर समद्विभाजित करते हैं।
चूँकि, बिंदुओं (x1, y1) और (x2, y2) को मिलाने वाले रेखाखंड का मध्य-बिंदु इस प्रकार दिया जाता है,
`((x_1 + x_2)/2, (y_1 + y_2)/2)`
BD का मध्य-बिंदु = AC का मध्य-बिंदु
`((8 + x)/2, (2 + y)/2) = ((6 + 9)/2, (1 + 4)/2)`
`((8 + x)/2, (2 + y)/2) = (15/2, 5/2)`
तो, हमारे पास है,
`(8 + x)/2 = 15/2`
⇒ 8 + x = 15
⇒ x = 7
और
`(2 + y)/2 = 5/2`
⇒ 2 + y = 5
⇒ y = 3
तो, समांतर चतुर्भुज का चौथा शीर्ष D(7, 3) है।
अब,
पार्श्व का मध्य-बिंदु
DC = `((7 + 9)/2, (3 + 4)/2)`
E = `(8, 7/2)`
∵ शीर्षों (x1, y1), (x2, y2) और (x3, y3) के साथ ΔABC का क्षेत्रफल;
= `1/2`[x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]
∴ ΔADE का क्षेत्रफल शीर्ष A(6, 1), D(7, 3) और `"E"(8, 7/2)` के साथ,
Δ = `1/2[6(3 - 7/2) + 7(7/2 - 1) + 8(1 - 3)]`
= `1/2[6 xx ((-1)/2) + 7(5/2) + 8(-2)]`
= `1/2(35/2 - 19)`
= `1/2((-3)/2)`
= `(-3)/4` लेकिन क्षेत्रफल ऋणात्मक नहीं हो सकता।
अतः, ΔADE का आवश्यक क्षेत्रफल `3/4` वर्ग इकाई है।
APPEARS IN
RELATED QUESTIONS
उस चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष इसी क्रम में, (-4, -2), (-3, -5), (3, -2) और (2, 3) हैं।
शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।
एक त्रिभुज ABC के शीर्ष A(4, 6), B(1, 5) और C(7, 2) हैं। भुजाओं AB और AC को क्रमश: D और E पर प्रतिच्छेद करते हुए एक रेखा इस प्रकार खींची गई है कि `"AD"/"AB" = "AE"/"AC" = 1/4` है। ∆ADE का क्षेत्रफल परिकलित कीजिए और इसकी तुलना ∆ABC के क्षेत्रफल से कीजिए।
(प्रमेय 6.2 और प्रमेय 6.6 का स्मरण कीजिए।)
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (–8, 4), (–6, 6) और (–3, 9) हैं।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
k के मान ज्ञात कीजिए, यदि बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेख हैं।
एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है
एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।