Advertisements
Advertisements
Question
शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।
Solution
मान लीजिए कि दिए हुए त्रिभुज के शीर्षों के निर्देशांक क्रमश: A(0, -1), B(2, 1) एवं C(0, 3) है। यदि इनकी भुजाओं AB, BC एवं CA के मध्य-बिन्दु क्रमशः D, E एवं F हों तो
`"D"((0 + 2)/2, (-1 + 1)/2), "E"((2 + 0)/2, (1 + 3)/2)` एवं `"F"((0 + 0)/2, (3 - 1)/2)`
D (1, 0), E (1, 2) एवं F (0, 1)
चूँकि
∆ = `1/2` [x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)]
ar (ABC) = `1/2` [0 (1 - 3) + 2 (3 + 1) + 0 (-1 - 1)]
= `1/2` [0 (-2) + 2 (4) + 0 (-2)]
= `1/2` [0 + 8 + 0]
= 4 वर्ग इकाई
एवं ar (DEF) = `1/2` [1 (2 - 1) + 1 (1 - 0) + 0 (0 - 2)]
= `1/2` [1 + 1 + 0]
= `1/2 xx 2`
= 1 वर्ग इकाई
`("ar"("DEF"))/("ar"("ABC")) = 1/4`
ar (DEF) : ar (ABC) = 1 : 4
अतः दिए त्रिभुज के मध्य-बिन्दुओं से बने त्रिभुज का अभीष्ट क्षेत्रफल = 1 वर्ग मात्रक एवं इस त्रिभुज के क्षेत्रफल का दिए त्रिभुज के क्षेत्रफल से अभीष्ट अनुपात 1:4 है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(8, 1), (k, -4), (2, -5)
कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसीमा (boundary) पर लगाया जाता है। इस भूखंड के अंदर एक त्रिभुजाकार घास लगा हुआ लॉन (lawn) है, जैसाकि आकृति में दर्शाया गया है। विद्यार्थियों को भूखंड के शेष भाग में है फूलों के पौधे के बीज बोने हैं।
(i) A को मूलबिंदु मानते हए, त्रिभुज के शीषों के निर्देशांक ज्ञात कीजिए।
(ii) यदि मूलबिंदु C हो, तो ∆PQR के शीर्षों के निर्देशांक क्या होंगे?
साथ ही, उपरोक्त दोनों स्थितियों में, त्रिभुजों के क्षेत्रफल ज्ञात कीजिए। आप क्या देखते हैं?
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
यदि बिंदु `D((-1)/2, 5/2) , E(7, 3)` और `F(7/2, 7/2)` एक त्रिभुज ABC की भुजाओं के मध्य-बिंदु हैं, तो ΔABC का क्षेत्रफल ज्ञात कीजिए।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।
एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।