Advertisements
Advertisements
Question
कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसीमा (boundary) पर लगाया जाता है। इस भूखंड के अंदर एक त्रिभुजाकार घास लगा हुआ लॉन (lawn) है, जैसाकि आकृति में दर्शाया गया है। विद्यार्थियों को भूखंड के शेष भाग में है फूलों के पौधे के बीज बोने हैं।
(i) A को मूलबिंदु मानते हए, त्रिभुज के शीषों के निर्देशांक ज्ञात कीजिए।
(ii) यदि मूलबिंदु C हो, तो ∆PQR के शीर्षों के निर्देशांक क्या होंगे?
साथ ही, उपरोक्त दोनों स्थितियों में, त्रिभुजों के क्षेत्रफल ज्ञात कीजिए। आप क्या देखते हैं?
Solution
(i) A को मूलबिन्दु लेकर लेखाचित्र के अनुसार अभीष्ट निर्देशांक P(4, 6), Q(3, 2), R(6, 5) हैं। AD = X-अक्ष एवं AB = Y-अक्ष पर मानने पर।
(ii) C को मूलबिन्दु लेकर लेखाचित्र के अनुसार,
अभीष्ट निर्देशांक P(12, 2), Q(13, 6), R(10, 3) हैं। CB = X-अक्ष एवं CD = Y-अक्ष पर मानने पर।
अब प्रथम स्थिति में :
ar (PQR) = `1/2`[4(2 - 5) + 3(5 - 6) + 6(6 - 2)]
ar (PQR) = `1/2`[4(-3) + 3(-1) + 6(4)]
= `1/2` [-12 - 3 + 24]
= `1/2`[-15 + 24]
= `9/2` m²
एवं द्वितीय स्थिति में :
ar (PQR) = `1/2` [12(6 - 3) + 13(3 - 2) + 10(2 - 6)]
= `1/2` [12(3) + 13(1) + 10(-4)]
= `1/2` [36 + 13 - 40]
= `1/2` [49 - 40]
= `9/2` m²
अतः प्रत्येक स्थिति में APQR का क्षेत्रफल = `9/2` m² है।
APPEARS IN
RELATED QUESTIONS
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:
(2, 3), (-1, 0), (2, -4)
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:
(-5, -1), (3, -5), (5, 2)
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(8, 1), (k, -4), (2, -5)
x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।
x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।