मराठी

कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसी - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसीमा (boundary) पर लगाया जाता है। इस भूखंड के अंदर एक त्रिभुजाकार घास लगा हुआ लॉन (lawn) है, जैसाकि आकृति में दर्शाया गया है। विद्यार्थियों को भूखंड के शेष भाग में है फूलों के पौधे के बीज बोने हैं।

(i) A को मूलबिंदु मानते हए, त्रिभुज के शीषों के निर्देशांक ज्ञात कीजिए।

(ii) यदि मूलबिंदु C हो, तो ∆PQR के शीर्षों के निर्देशांक क्या होंगे?

साथ ही, उपरोक्त दोनों स्थितियों में, त्रिभुजों के क्षेत्रफल ज्ञात कीजिए। आप क्या देखते हैं?

बेरीज

उत्तर

(i) A को मूलबिन्दु लेकर लेखाचित्र के अनुसार अभीष्ट निर्देशांक P(4, 6), Q(3, 2), R(6, 5) हैं। AD = X-अक्ष एवं AB = Y-अक्ष पर मानने पर।

(ii) C को मूलबिन्दु लेकर लेखाचित्र के अनुसार,
अभीष्ट निर्देशांक P(12, 2), Q(13, 6), R(10, 3) हैं। CB = X-अक्ष एवं CD = Y-अक्ष पर मानने पर।

अब प्रथम स्थिति में :

ar (PQR) = `1/2`[4(2 - 5) + 3(5 - 6) + 6(6 - 2)]

ar (PQR) = `1/2`[4(-3) + 3(-1) + 6(4)]

= `1/2` [-12 - 3 + 24]

= `1/2`[-15 + 24]

= `9/2` m²

एवं द्वितीय स्थिति में :

ar (PQR) = `1/2` [12(6 - 3) + 13(3 - 2) + 10(2 - 6)]

= `1/2` [12(3) + 13(1) + 10(-4)]

= `1/2` [36 + 13 - 40]

= `1/2` [49 - 40]

= `9/2` m²

अतः प्रत्येक स्थिति में APQR का क्षेत्रफल = `9/2` m² है।

shaalaa.com
त्रिभुज का क्षेत्रफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: निर्देशांक ज्यामिति - प्रश्नावली 7.4 (ऐच्छिक)* [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 7 निर्देशांक ज्यामिति
प्रश्नावली 7.4 (ऐच्छिक)* | Q 5. | पृष्ठ १८९

संबंधित प्रश्‍न

उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:

(-5, -1), (3, -5), (5, 2)


निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:

(7, -2), (5, 1), (3, k)


निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:

(8, 1), (k, -4), (2, -5)


शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।


शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।


m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।


उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (–8, 4), (–6, 6) और (–3, 9) हैं।


एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।


एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×