मराठी

एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।

बेरीज

उत्तर

दिया गया है - एक त्रिभुज का परिमाप 50 cm है।

अब, त्रिभुज का अर्ध-परिमाप

= `"त्रिकोण का परिमाप"/2` 

= `50/2`

= 25

मान लीजिए कि त्रिभुज की छोटी भुजा x cm है।

इसलिए, दूसरी भुजा b = (x + 4) cm और तीसरी भुजा c = (2x – 6) cm होगी।

अब, त्रिभुज का परिमाप = a + b + c = x + (x + 4) + (2x – 6)

50 cm = (4x – 2) cm

50 = 4x – 2

4x = 50 + 2

4x = 52

x = `52/4`

x = 13

तो, त्रिभुज की तीन भुजाएँ हैं -

a = x = 13,

b = x + 4 = 13 + 4 = 17

c = 2x – 6 = 2 × 13 – 6 = 26 – 6 = 20

तो, त्रिभुज का क्षेत्रफल = `sqrt(s(s - a)(s - b)(s - c))`

= `sqrt(25 xx (25 - 13) xx (25 - 17) xx (25 - 20))`

= `sqrt(25 xx 12 xx 8 xx 5)`

= `sqrt(5 xx 5 xx 4 xx 3 xx 4 xx 2 xx 5)`

= `5 xx 4 xx 20sqrt(30)  cm^2`

= `20sqrt(30)  cm^2`

इसलिए, त्रिभुज का क्षेत्रफल `20sqrt(30)  cm^2` है।

shaalaa.com
त्रिभुज का क्षेत्रफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: हीरोन का सूत्र - प्रश्नावली 12.4 [पृष्ठ १२०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 12 हीरोन का सूत्र
प्रश्नावली 12.4 | Q 2. | पृष्ठ १२०

संबंधित प्रश्‍न

उस चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष इसी क्रम में, (-4, -2), (-3, -5), (3, -2) और (2, 3) हैं।


निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:

(8, 1), (k, -4), (2, -5)


शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।


किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।


यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।


बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।


बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।


x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।


एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है


एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×