मराठी

X-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।

बेरीज

उत्तर

बिंदु Q, AB का मध्यबिंदु है क्योंकि बिंदु P, AB के लंब समद्विभाजक पर स्थित है।


मध्यबिंदु सूत्र द्वारा:

`(x_1 + x_2)/2 = (-5 + 4)/2`

= `-1/2`

x = `-1/2`

दिया गया है कि,

P x-अक्ष पर स्थित है,

तो y = 0

P(x, y) = `(-1/2, 0)`

इसलिए, यह एक समद्विबाहु त्रिभुज है।

shaalaa.com
त्रिभुज का क्षेत्रफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: निर्देशांक ज्यामिति - प्रश्नावली 7.3 [पृष्ठ ८६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 7 निर्देशांक ज्यामिति
प्रश्नावली 7.3 | Q 6. | पृष्ठ ८६

संबंधित प्रश्‍न

उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:

(-5, -1), (3, -5), (5, 2)


शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।


किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।


एक त्रिभुज ABC के शीर्ष A(4, 6), B(1, 5) और C(7, 2) हैं। भुजाओं AB और AC को क्रमश: D और E पर प्रतिच्छेद करते हुए एक रेखा इस प्रकार खींची गई है कि `"AD"/"AB" = "AE"/"AC" = 1/4` है। ∆ADE का क्षेत्रफल परिकलित कीजिए और इसकी तुलना ∆ABC के क्षेत्रफल से कीजिए।

(प्रमेय 6.2 और प्रमेय 6.6 का स्मरण कीजिए।)


बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।


शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।


बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।


बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।


एक त्रिभुज की भुजाएँ 56 cm, 60 cm और 52 cm लंबाईयों की हैं। तब, त्रिभुज का क्षेत्रफल है


आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×