Advertisements
Advertisements
प्रश्न
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन असत्य है।
स्पष्टीकरण -
हम जानते हैं कि, त्रिभुज का क्षेत्रफल = `1/2` (आधार × ऊँचाई)
यहाँ आधार = 4 cm और ऊँचाई = 6 cm
∴ त्रिभुज का क्षेत्रफल = `1/2` × 4 × 6 = 12 cm2
APPEARS IN
संबंधित प्रश्न
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:
(-5, -1), (3, -5), (5, 2)
किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।
x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।
बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।
एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।
एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।