हिंदी

आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है। 

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन असत्य है।

स्पष्टीकरण -

हम जानते हैं कि, त्रिभुज का क्षेत्रफल = `1/2` (आधार × ऊँचाई)

यहाँ आधार = 4 cm और ऊँचाई = 6 cm

∴ त्रिभुज का क्षेत्रफल = `1/2` × 4 × 6 = 12 cm2

shaalaa.com
त्रिभुज का क्षेत्रफल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: हीरोन का सूत्र - प्रश्नावली 12.2 [पृष्ठ ११६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 12 हीरोन का सूत्र
प्रश्नावली 12.2 | Q 1. | पृष्ठ ११६

संबंधित प्रश्न

उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:

(2, 3), (-1, 0), (2, -4)


उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं:

(-5, -1), (3, -5), (5, 2)


निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:

(7, -2), (5, 1), (3, k)


किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।


कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसीमा (boundary) पर लगाया जाता है। इस भूखंड के अंदर एक त्रिभुजाकार घास लगा हुआ लॉन (lawn) है, जैसाकि आकृति में दर्शाया गया है। विद्यार्थियों को भूखंड के शेष भाग में है फूलों के पौधे के बीज बोने हैं।

(i) A को मूलबिंदु मानते हए, त्रिभुज के शीषों के निर्देशांक ज्ञात कीजिए।

(ii) यदि मूलबिंदु C हो, तो ∆PQR के शीर्षों के निर्देशांक क्या होंगे?

साथ ही, उपरोक्त दोनों स्थितियों में, त्रिभुजों के क्षेत्रफल ज्ञात कीजिए। आप क्या देखते हैं?


बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।


बिंदु (0, 5), (0, –9) और (3, 6) संरेख हैं।


बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।


x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।


एक समबाहु त्रिभुज का परिमाप 60 m है। इसका क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×