Advertisements
Advertisements
Question
एक त्रिभुज ABC के शीर्ष A(4, 6), B(1, 5) और C(7, 2) हैं। भुजाओं AB और AC को क्रमश: D और E पर प्रतिच्छेद करते हुए एक रेखा इस प्रकार खींची गई है कि `"AD"/"AB" = "AE"/"AC" = 1/4` है। ∆ADE का क्षेत्रफल परिकलित कीजिए और इसकी तुलना ∆ABC के क्षेत्रफल से कीजिए।
(प्रमेय 6.2 और प्रमेय 6.6 का स्मरण कीजिए।)
Solution
∆ADE और ∆ABC में,
चूँकि `"AD"/"AB" = "AE"/"AC" = 1/4` (दिया है)
एवं ∠DAE = ∠BAC [चित्रानुसार उभयनिष्ठ हैं]
⇒ ΔADE ∼ ΔABC (SAS समरूपता)
⇒ `("ar"("ADE"))/("ar"("ABC")) = ("AD"/"AB")^2 = (1/4)^2` (प्रमेय 6.6 से)
⇒ `("ar"("ADE"))/("ar"("ABC")) = 1/16` ..........(1)
⇒ ar(ADE) : ar(ABC) = 1 : 16
बिन्दु D, AB रेखाखण्ड को 1 : 3 के अनुपात में विभाजित करता है क्योंकि AD : AB = 1 : 4
AD : DB = 1 : 3, इसलिए D के निर्देशांक
x' = `(1 xx (1) + 3(4))/(1 + 3) = (1 + 12)/4 = 13/4`
एवं y' = `(1 xx (5) + 3(6))/(1 + 3) = (5 + 18)/4 = 23/4`
इसी प्रकार E के निर्देशांक
x'' = `(1 xx 7 + 3(4))/(1 + 3) = (7 + 12)/4 = 19/4`
एवं y'' = `(1 xx (2) + 3 xx (6))/(1 + 4) = (2 + 18)/4 = 20/4 = 5`
अब ar(ADE) = `1/2[4(23/4 - 5) + 13/4(5 - 6) + 19/4(6 - 23/4)]`
= `1/2[4 xx 3/4 + 13/4(-1) + 19/4 xx 1/4]`
⇒ ar(ADE) = `1/2[3 - 13/4 + 19/16] = 1/2[[48 - 52 + 19]/16] = 1/2[15/16] = 15/32` वर्ग मात्रक
ar(ABC) = `1/2[4(5 - 2) + 1(2 - 6) + 7(6 - 5)]`
= `1/2[4 xx 3 + (-4) + 7]`
= `1/2[12 - 4 + 7] = 1/2[19 - 4] = 15/2` वर्ग मात्रक
∴ `("ar"("ADE"))/("ar"("ABC")) = (15"/"32)/(15"/"2) = 1/16` ...........(2)
अत: ∆ADE का अभीष्ट क्षेत्रफल = `15/32` त्रक एवं ∆ADE और ∆ABC के क्षेत्रफलों का अभीष्ट अनुपात 1 : 16 है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(7, -2), (5, 1), (3, k)
कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसीमा (boundary) पर लगाया जाता है। इस भूखंड के अंदर एक त्रिभुजाकार घास लगा हुआ लॉन (lawn) है, जैसाकि आकृति में दर्शाया गया है। विद्यार्थियों को भूखंड के शेष भाग में है फूलों के पौधे के बीज बोने हैं।
(i) A को मूलबिंदु मानते हए, त्रिभुज के शीषों के निर्देशांक ज्ञात कीजिए।
(ii) यदि मूलबिंदु C हो, तो ∆PQR के शीर्षों के निर्देशांक क्या होंगे?
साथ ही, उपरोक्त दोनों स्थितियों में, त्रिभुजों के क्षेत्रफल ज्ञात कीजिए। आप क्या देखते हैं?
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।
x-अक्ष पर स्थित बिंदु Q के निर्देशांक ज्ञात कीजिए, जो बिंदुओं A(–5, –2) और B(4, –2) के लंब समद्विभाजक पर भी स्थित है। बिंदुओं Q, A और B से बनने वाले त्रिभुज का प्रकार भी बताइए।
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (–8, 4), (–6, 6) और (–3, 9) हैं।
यदि बिंदु `D((-1)/2, 5/2) , E(7, 3)` और `F(7/2, 7/2)` एक त्रिभुज ABC की भुजाओं के मध्य-बिंदु हैं, तो ΔABC का क्षेत्रफल ज्ञात कीजिए।
एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।
एक समलंब का क्षेत्रफल 475 cm2 है तथा ऊँचाई 19 cm है। इसकी समांतर भुजाओं की लंबाइयाँ ज्ञात कीजिए, यदि एक समांतर भुजा दूसरी समांतर भुजा से 4 cm अधिक है।