Advertisements
Advertisements
प्रश्न
यदि बिंदु A(2, – 4), बिंदुओं P(3, 8) और Q(–10, y) से समदूरस्थ है, तो y के मान ज्ञात कीजिए। दूरी PQ भी ज्ञात कीजिए।
उत्तर
दिए गए बिंदु A(2, – 4), P(3, 8) और Q(–10, y) हैं।
प्रश्न के अनुसार,
PA = QA
`sqrt((2 - 3)^2 + (-4 - 8)^2) = sqrt((2 + 10)^2 + (-4 - y)^2)`
`sqrt((-1)^2 + (-12)^2) = sqrt((12)^2 + (4 + y)^2)`
`sqrt(1 + 144) = sqrt(144 + 16 + y^2 + 8y)`
`sqrt(145) = sqrt(160 + y^2 + 8y)`
दोनों का वर्ग करने पर, हमें प्राप्त होता है।
145 = 160 + y2 + 8y
y2 + 8y + 160 – 145 = 0
y2 + 8y + 15 = 0
y2 + 5y + 3y + 15 = 0
y(y + 5) + 3(y + 5) = 0
⇒ (y + 5)(y + 3) = 0
⇒ y + 5 = 0
⇒ y = –5
और y + 3 = 0
⇒ y = –3
∴ y = – 3, – 5
अब, PQ = `sqrt((-10 - 3)^2 + (y - 8)^2`
y = – 3 के लिए
PQ = `sqrt((-13)^2 + (-3 - 8)^2`
= `sqrt(169 + 121)`
= `sqrt(290)` इकाइयाँ
और y = – 5 के लिए
PQ = `sqrt((-13)^2 + (-5 - 8)^2`
= `sqrt(169 + 169)`
= `sqrt(338)` इकाइयाँ
अतः, y का मान – 3 और – 5 है, PQ = `sqrt(290)` और `sqrt(338)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि, P(2, -2), Q(7, 3), R(11, -1) और S(6, -6) समांतर चर्तुभुज के शीर्षबिंदु है।
शीर्ष बिंदु A(7, 1), B(3, 5) और C(2, 0) वाले त्रिभुज के परिवृत्त के केंद्र (परिकेंद्र) का निर्देशांक और त्रिज्या ज्ञात कीजिए।
बिंदुओं (0,0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?
जाँच कीजिए कि क्या बिंदु (5, -2), (6, 4) और (7,- 2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।
बिंदु (– 4, 0), (4, 0) और (0, 3) निम्नलिखित के शीर्ष ______ हैं।
शीर्षों A(– 2, 0), B(2, 0) और C(0, 2) वाला त्रिभुज ABC शीर्षों D(–4, 0), E(4, 0) और F(0, 4) वाले त्रिभुज DEF के समरूप है।
बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।
यदि (a, b), बिंदुओं A(10, –6) और B(k, 4) को मिलाने वाले रेखाखंड का मध्य-बिंदु है तथा a – 2b = 18 है, तो k का मान और दूरी AB ज्ञात कीजिए।