Advertisements
Advertisements
प्रश्न
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
उत्तर
मान लीजिए कि बिंदु (4, 5), (7, 6), (4, 3) और (1, 2) क्रमशः दिए गए चतुर्भुज के शीर्ष A, B, C और D को दर्शाते हैं।
∴ AB = `sqrt((4-7)^2+(5-6)^2)`
= `sqrt((-3)^2+(-1)^2)`
= `sqrt(9+1)`
= `sqrt10`
BC = `sqrt((7-4)^2+(6-3)^2)`
= `sqrt((3)^2+(3)^2)`
= `sqrt(9+9)`
= `sqrt18`
CD = `sqrt((4-1)^2+(3-2)^2)`
= `sqrt((3)^2+(1)^2)`
= `sqrt(9+1)`
= `sqrt10`
AD = `sqrt((4-1)^2+(5-2)^2)`
= `sqrt((3)^2+(3)^2)`
= `sqrt(9+9)`
= `sqrt18`
विकर्ण AC = `sqrt((4-4)^2+(5-3)^2)`
= `sqrt((0)^2+(2)^2)`
= `sqrt(0+4)`
= 2
विकर्ण CD = `sqrt((7-1)^2 + (6-2)^2)`
= `sqrt((6)^2+(4)^2)`
= `sqrt(36+16)`
= `sqrt52`
= `13sqrt2`
यह देखा जा सकता है कि इस चतुर्भुज की विपरीत भुजाएँ समान लंबाई के हैं। हालाँकि, विकर्ण अलग-अलग लंबाई के हैं। इसलिए, दिए गए बिंदु एक समांतर चतुर्भुज के शीर्ष हैं।
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
L(-2, 3), M(1, -3), N(5, 4)
यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि `square`PQRS एक आयत है।
जाँच कीजिए कि क्या बिंदु (5, -2), (6, 4) और (7,- 2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-1, -2,), (1, 0), (-1, 2), (-3, 0)
बिंदुओं (6, -6), (3, -7) और (3, 3) से होकर जाने वाले वृत्त का केंद्र ज्ञात कीजिए।
शीर्षों (0, 4), (0, 0) और (3, 0) वाले त्रिभुज का परिमाप ______ है।
बिंदु (– 4, 0), (4, 0) और (0, 3) निम्नलिखित के शीर्ष ______ हैं।
बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।
बिंदु A(–1, –2), B(4, 3), C(2, 5) और D(–3, 0) इसी क्रम में एक आयत बनाते हैं।
यदि (a, b), बिंदुओं A(10, –6) और B(k, 4) को मिलाने वाले रेखाखंड का मध्य-बिंदु है तथा a – 2b = 18 है, तो k का मान और दूरी AB ज्ञात कीजिए।