Advertisements
Advertisements
Question
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
Solution
मान लीजिए कि बिंदु (4, 5), (7, 6), (4, 3) और (1, 2) क्रमशः दिए गए चतुर्भुज के शीर्ष A, B, C और D को दर्शाते हैं।
∴ AB = `sqrt((4-7)^2+(5-6)^2)`
= `sqrt((-3)^2+(-1)^2)`
= `sqrt(9+1)`
= `sqrt10`
BC = `sqrt((7-4)^2+(6-3)^2)`
= `sqrt((3)^2+(3)^2)`
= `sqrt(9+9)`
= `sqrt18`
CD = `sqrt((4-1)^2+(3-2)^2)`
= `sqrt((3)^2+(1)^2)`
= `sqrt(9+1)`
= `sqrt10`
AD = `sqrt((4-1)^2+(5-2)^2)`
= `sqrt((3)^2+(3)^2)`
= `sqrt(9+9)`
= `sqrt18`
विकर्ण AC = `sqrt((4-4)^2+(5-3)^2)`
= `sqrt((0)^2+(2)^2)`
= `sqrt(0+4)`
= 2
विकर्ण CD = `sqrt((7-1)^2 + (6-2)^2)`
= `sqrt((6)^2+(4)^2)`
= `sqrt(36+16)`
= `sqrt52`
= `13sqrt2`
यह देखा जा सकता है कि इस चतुर्भुज की विपरीत भुजाएँ समान लंबाई के हैं। हालाँकि, विकर्ण अलग-अलग लंबाई के हैं। इसलिए, दिए गए बिंदु एक समांतर चतुर्भुज के शीर्ष हैं।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
L(-2, 3), M(1, -3), N(5, 4)
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
R(0, 3), D(2, 1), S(3, -1)
सिद्ध कीजिए कि, P(2, -2), Q(7, 3), R(11, -1) और S(6, -6) समांतर चर्तुभुज के शीर्षबिंदु है।
सिद्ध कीजिए कि, बिंदु P(1, −2), Q(5, 2), R(3, −1) और S(−1, −5) समांतर चतुर्भुज के शीर्षबिंदु हैं।
बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।
बिंदुओं (0,0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?
यदि Q(0, 1) बिंदुओं P(5, –3) और R(x, 6) से समदूरस्थ है, तो x के मान ज्ञात कीजिए। दूरियाँ QR और PR भी ज्ञात कीजिए।
शीर्षों (0, 4), (0, 0) और (3, 0) वाले त्रिभुज का परिमाप ______ है।
यदि बिंदुओं Q(– 6, 5) और R(– 2, 3) को मिलाने वाले रेखाखंड का मध्य-बिंदु `P (a/3, 4)` है, तो a का मान ______ है।
बिंदुओं A(–5, 6), B(–4, –2) और C(7, 5) से बनने वाले त्रिभुज का प्रकार बताइए।