English

बिंदुओं A(–5, 6), B(–4, –2) और C(7, 5) से बनने वाले त्रिभुज का प्रकार बताइए। - Mathematics (गणित)

Advertisements
Advertisements

Question

बिंदुओं A(–5, 6), B(–4, –2) और C(7, 5) से बनने वाले त्रिभुज का प्रकार बताइए।

Sum

Solution

त्रिभुज का प्रकार जानने के लिए सबसे पहले हम तीनों भुजाओं की लंबाई निर्धारित करते हैं और देखते हैं कि त्रिभुज की जो भी स्थिति इन भुजाओं से संतुष्ट होती है।

अब, दो बिंदुओं के बीच दूरी सूत्र का उपयोग करते हुए,

AB = `sqrt((-4 + 5)^2 + (-2 - 6)^2`   ...`[∵ d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`

= `sqrt((1)^2 + (-8)^2`

= `sqrt(1 + 64)`

= `sqrt(65)`

BC = `sqrt((7 + 4)^2 + (5 + 2)^2`

= `sqrt((11)^2 + (7)^2`

= `sqrt(121 + 49)`

= `sqrt(170)`

और CA = `sqrt((-5 - 7)^2 + (6 - 5)^2`

= `sqrt((-12)^2 + (1)^2`

= `sqrt(144 + 1)`

= `sqrt(145)`

हमने देखा कि,

AB ≠ BC ≠ CA

और पाइथागोरस की स्थिति को ΔABC में न रखें।

अर्थात, (कर्ण)2 = (आधार)2 + (लंबवत)2

अतः, अभीष्ट त्रिभुज विषमबाहु है क्योंकि इसकी सभी भुजाएँ समान नहीं हैं अर्थात एक दूसरे से भिन्न हैं।

shaalaa.com
दूरी सूत्र
  Is there an error in this question or solution?
Chapter 7: निर्देशांक ज्यामिति - प्रश्नावली 7.3 [Page 85]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 7 निर्देशांक ज्यामिति
प्रश्नावली 7.3 | Q 1. | Page 85

RELATED QUESTIONS

सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।


जाँच कीजिए कि बिंदु P(-2, 2), Q(2, 2) और R(2, 7) समकोण त्रिभुज के शीर्षबिंदु हैं। 


किसी त्रिभुज के शीर्षबिंदु A(-3,1), B(0,-2) और C(1,3) हों तो इस त्रिभुज के परिकेंद्र के निर्देशांक ज्ञात कीजिए।


निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

L(6, 4), M(-5, -3), N(-6, 8)


बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:

(2, 3), (4, 1)


निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:

(-3, 5), (3, 1), (0, 3), (-1, -4)


यदि बिंदु P(2, 1), बिंदुओं A(4, 2) और B(8, 4) को मिलाने वाले रेखाखंड पर स्थित तो ______  है।


बिंदु A(4, 3), B(6, 4), C(5, –6) और D(–3, 5) एक समांतर चतुर्भुज के शीर्ष हैं। 


बिंदु A(–1, –2), B(4, 3), C(2, 5) और D(–3, 0) इसी क्रम में एक आयत बनाते हैं।


यदि बिंदु A(2, – 4), बिंदुओं P(3, 8) और Q(–10, y) से समदूरस्थ है, तो y के मान ज्ञात कीजिए। दूरी PQ भी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×