Advertisements
Advertisements
Question
सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।
Solution
A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4)
दूरी सूत्र से,
AB = `sqrt((1 - 1)^2 + (6 - 2)^2)`
∴ AB = `sqrt(0^2 + 4^2)`
∴ AB = `sqrt(4^2)`
∴ AB = 4
BC = `sqrt((1 + 2sqrt3 - 1)^2 + (4 - 6)^2)`
∴ BC = `sqrt((2sqrt3)^2 + (-2)^2)`
∴ BC = `sqrt(12 + 4)`
∴ BC = `sqrt16`
∴ BC = 4
∴ AC = `sqrt((1 + 2sqrt3 - 1)^2 + (4 - 2)^2)`
∴ AC = `sqrt((2sqrt3)^2 + (2)^2)`
∴ AC = `sqrt(12 + 4)`
∴ AC = `sqrt16`
∴ AC = 4
∴ AB = BC = AC
∴ ΔABC एक समबाहु त्रिभुज है |
∴ A(1, 2); B(1, 6); C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
L(-2, 3), M(1, -3), N(5, 4)
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
A(`sqrt2, sqrt2`), B(`-sqrt2 , -sqrt2`), C(`-sqrt6 , sqrt6`)
सिद्ध कीजिए, कि A(4, -1), B(6, 0), C(7, -2) और D(5, -3) वर्ग के शीर्ष बिंदु हैं।
y का वह मान ज्ञात कीजिए, जिसके लिए बिंदु P(2, -3) और Q(10, y) के बीच की दूरी 10 मात्रक है।
किसी कक्षा में, चार मित्र बिंदुओं A, B, C और D पर बैठे हुए हैं, जैसाकि आकृति में दर्शाया गया है। चंपा और चमेली कक्षा के अंदर आती हैं और कुछ मिनट तक देखने के बाद, चंपा चमेली से पूछती है, 'क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?' चमेली इससे सहमत नहीं है। दूरी सूत्र का प्रयोग करके, बताइए कि इनमें कौन सही है?
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-3, 5), (3, 1), (0, 3), (-1, -4)
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
बिंदुओं A(0, 6) और B(0, –2) के बीच की दूरी ______ है।
किसी वृत्त का केन्द्र (2a, a – 7) है। यदि वृत्त, बिंदु (11, – 9) से होकर जाता है और उसका व्यास `10sqrt(2)` इकाई है, तो a के मान ज्ञात कीजिए।