Advertisements
Advertisements
Question
किसी कक्षा में, चार मित्र बिंदुओं A, B, C और D पर बैठे हुए हैं, जैसाकि आकृति में दर्शाया गया है। चंपा और चमेली कक्षा के अंदर आती हैं और कुछ मिनट तक देखने के बाद, चंपा चमेली से पूछती है, 'क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?' चमेली इससे सहमत नहीं है। दूरी सूत्र का प्रयोग करके, बताइए कि इनमें कौन सही है?
Solution
यह देखा जा सकता है कि A (3, 4), B (6, 7), C (9, 4), और D (6, 1) इन 4 मित्रों की स्थितियाँ हैं।
AB = `sqrt((3-6)^2+(4-7)^2)`
= `sqrt((-3)^2+(-3)^2)`
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2`
BC = `sqrt((6-9)^2+(7-4)^2) `
= `sqrt((-3)^2+(3)^2) `
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2`
CD = `sqrt((9-6)^2+(4-1)^2)`
= `sqrt((3)^2+(3)^2)`
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2 `
AD = `sqrt((3-6)^2+(4-1)^2)`
= `sqrt((-3)^2 + (3)^2)`
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2`
विकर्ण AC = `sqrt((3-9)^2+(4-4)^2)`
= `sqrt((-6)^2)`
= 6
विकर्ण BD = `sqrt((6-6)^2+(7-1)^2)`
= `sqrt((6)^2)`
= 6
यह देखा जा सकता है कि इस चतुर्भुज ABCD की सभी भुजाएँ समान लंबाई की हैं और विकर्ण भी समान लंबाई के हैं।
अतः ABCD एक वर्ग है और चंपा सही थी।
APPEARS IN
RELATED QUESTIONS
यदि बिंदु L(x, 7) और M(1, 15) के बीच की दूरी 10 हो, तो x का मान ज्ञात कीजिए।
जाँच कीजिए कि बिंदु P(-2, 2), Q(2, 2) और R(2, 7) समकोण त्रिभुज के शीर्षबिंदु हैं।
किसी त्रिभुज के शीर्षबिंदु A(-3,1), B(0,-2) और C(1,3) हों तो इस त्रिभुज के परिकेंद्र के निर्देशांक ज्ञात कीजिए।
शीर्ष बिंदु A(7, 1), B(3, 5) और C(2, 0) वाले त्रिभुज के परिवृत्त के केंद्र (परिकेंद्र) का निर्देशांक और त्रिज्या ज्ञात कीजिए।
बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-1, -2,), (1, 0), (-1, 2), (-3, 0)
बिंदु A(4, 3), B(6, 4), C(5, –6) और D(–3, 5) एक समांतर चतुर्भुज के शीर्ष हैं।
बिंदु A(–1, –2), B(4, 3), C(2, 5) और D(–3, 0) इसी क्रम में एक आयत बनाते हैं।
बिंदुओं A(–5, 6), B(–4, –2) और C(7, 5) से बनने वाले त्रिभुज का प्रकार बताइए।
यदि (a, b), बिंदुओं A(10, –6) और B(k, 4) को मिलाने वाले रेखाखंड का मध्य-बिंदु है तथा a – 2b = 18 है, तो k का मान और दूरी AB ज्ञात कीजिए।