Advertisements
Advertisements
प्रश्न
किसी कक्षा में, चार मित्र बिंदुओं A, B, C और D पर बैठे हुए हैं, जैसाकि आकृति में दर्शाया गया है। चंपा और चमेली कक्षा के अंदर आती हैं और कुछ मिनट तक देखने के बाद, चंपा चमेली से पूछती है, 'क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?' चमेली इससे सहमत नहीं है। दूरी सूत्र का प्रयोग करके, बताइए कि इनमें कौन सही है?
उत्तर
यह देखा जा सकता है कि A (3, 4), B (6, 7), C (9, 4), और D (6, 1) इन 4 मित्रों की स्थितियाँ हैं।
AB = `sqrt((3-6)^2+(4-7)^2)`
= `sqrt((-3)^2+(-3)^2)`
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2`
BC = `sqrt((6-9)^2+(7-4)^2) `
= `sqrt((-3)^2+(3)^2) `
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2`
CD = `sqrt((9-6)^2+(4-1)^2)`
= `sqrt((3)^2+(3)^2)`
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2 `
AD = `sqrt((3-6)^2+(4-1)^2)`
= `sqrt((-3)^2 + (3)^2)`
= `sqrt(9+9)`
= `sqrt18`
= `3sqrt2`
विकर्ण AC = `sqrt((3-9)^2+(4-4)^2)`
= `sqrt((-6)^2)`
= 6
विकर्ण BD = `sqrt((6-6)^2+(7-1)^2)`
= `sqrt((6)^2)`
= 6
यह देखा जा सकता है कि इस चतुर्भुज ABCD की सभी भुजाएँ समान लंबाई की हैं और विकर्ण भी समान लंबाई के हैं।
अतः ABCD एक वर्ग है और चंपा सही थी।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।
यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि `square`PQRS एक आयत है।
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(a, b), (-a, -b)
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-1, -2,), (1, 0), (-1, 2), (-3, 0)
यदि Q(0, 1) बिंदुओं P(5, –3) और R(x, 6) से समदूरस्थ है, तो x के मान ज्ञात कीजिए। दूरियाँ QR और PR भी ज्ञात कीजिए।
बिंदु P(–6, 8) की मूलबिंदु से दूरी ______ है।
AOBC एक आयत है, जिसके तीन शीर्ष A(0, 3), O(0, 0) और B(5, 0) हैं। इसका विकर्ण ______ हैं।
बिंदु A(4, 3), B(6, 4), C(5, –6) और D(–3, 5) एक समांतर चतुर्भुज के शीर्ष हैं।
बिंदुओं A(–5, 6), B(–4, –2) और C(7, 5) से बनने वाले त्रिभुज का प्रकार बताइए।
बिन्दु O(0, 0) तथा P(3, 4) के बीच की दूरी ज्ञात कीजिए।