Advertisements
Advertisements
प्रश्न
बिंदुओं A(–5, 6), B(–4, –2) और C(7, 5) से बनने वाले त्रिभुज का प्रकार बताइए।
उत्तर
त्रिभुज का प्रकार जानने के लिए सबसे पहले हम तीनों भुजाओं की लंबाई निर्धारित करते हैं और देखते हैं कि त्रिभुज की जो भी स्थिति इन भुजाओं से संतुष्ट होती है।
अब, दो बिंदुओं के बीच दूरी सूत्र का उपयोग करते हुए,
AB = `sqrt((-4 + 5)^2 + (-2 - 6)^2` ...`[∵ d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`
= `sqrt((1)^2 + (-8)^2`
= `sqrt(1 + 64)`
= `sqrt(65)`
BC = `sqrt((7 + 4)^2 + (5 + 2)^2`
= `sqrt((11)^2 + (7)^2`
= `sqrt(121 + 49)`
= `sqrt(170)`
और CA = `sqrt((-5 - 7)^2 + (6 - 5)^2`
= `sqrt((-12)^2 + (1)^2`
= `sqrt(144 + 1)`
= `sqrt(145)`
हमने देखा कि,
AB ≠ BC ≠ CA
और पाइथागोरस की स्थिति को ΔABC में न रखें।
अर्थात, (कर्ण)2 = (आधार)2 + (लंबवत)2
अतः, अभीष्ट त्रिभुज विषमबाहु है क्योंकि इसकी सभी भुजाएँ समान नहीं हैं अर्थात एक दूसरे से भिन्न हैं।
APPEARS IN
संबंधित प्रश्न
जाँच कीजिए कि बिंदु P(-2, 2), Q(2, 2) और R(2, 7) समकोण त्रिभुज के शीर्षबिंदु हैं।
सिद्ध कीजिए कि, A(-4, -7), B(-1, 2), C(8, 5) और D(5, -4) समचतुर्भुज ABCD के शीर्ष बिंदु हैं।
शीर्ष बिंदु A(7, 1), B(3, 5) और C(2, 0) वाले त्रिभुज के परिवृत्त के केंद्र (परिकेंद्र) का निर्देशांक और त्रिज्या ज्ञात कीजिए।
बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।
x-अक्ष पर वह बिंदु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ हैं।
बिंदुओं A(0, 6) और B(0, –2) के बीच की दूरी ______ है।
शीर्षों (0, 4), (0, 0) और (3, 0) वाले त्रिभुज का परिमाप ______ है।
बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।
किसी वृत्त का केन्द्र (2a, a – 7) है। यदि वृत्त, बिंदु (11, – 9) से होकर जाता है और उसका व्यास `10sqrt(2)` इकाई है, तो a के मान ज्ञात कीजिए।
बिन्दु O(0, 0) तथा P(3, 4) के बीच की दूरी ज्ञात कीजिए।